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APERCJ GENERAL DES ETUDES SUR IA PROPAGATION

DES ONDES ACOUSTIQUES

ii. PERULLI
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RFSUNE

Les dtudes tant thdoriques qu'expdrimentales Sur ISa propagation des ondes acoustiques ont fait lrbjet
de travauc dapuis de nombreux sitcles. Aprbs tin bref aperqu historique de 'es dtudes on prdsente quelques
una des diffdrents thlmes qui seront abordfs dana le but de f31re l'4tat des connaissances dani ce domaine
particulier de lacoustique.

I-INTRODUCTION

Lea dtudes thdoriques et expdrimentaleft sur 'a propagation des sons dans lea fluidas ont fait l.'objet
de travaux A la fois anciena et rodernes.

En effet, des textes anciens qii ant pu traverser lea siZgcles et nous parvenir, le premier re.Iatif 3L
t'acoustique eat d'Ariatote (384-322 av. .Y.C.) qui a effectud una classification des diffdrentes branches
de l'acoustique en cansacrant une part importante A l~a propagation des ondes sonores. 11 a preasenti d'une
part qu'il axistait une forte analogie entra la propagation des ondes acoustiques dans las liquides et dons
lea gaz et, d'nutre part que le milieu avait une influence non ndgligeable aur cetto! propagation (effata
de rdfraction). Seulemcnt, la notion de vitesse de propagation des sonls inddpendante de la frdquence le
afnait et, en particulier dana le ens des sons purs de basse frdquencc, Aristote consid~rait qua la cd16-
nit du son dtait ddpendante do la frdquence.

Vraisemblablesient aur in base de ces travaux, Vitruve [1) (ler sibicle ay. J.C.) a ddfini des formes
de rdsonateurs (en forms d'amphores) qui ant eu pour consdquence la rdalisatian de thdatres antiques dont
la qualitd acoustique eat difficlement imitable [2).

Aux i6lame et M.7me silcles diffdrenta travaux sur l'acousrique ont donnd lieu Ak un certain nolabre
d'ouvrages. Ceux-c a raient plut~t orientf a vera Iaudition des sons. En ce qui concerne la propagation
on peat, entre autres, ratenir lea dtnpes suivantes:

- Gassendi (1592-1655) qui a ddmontrd qua l~a cfldritL du son eat inddpendante de Ia frdquence,

- Mewton (1643-1722) qui a rfdigd une premiL~re thdorie de propagation des sons dana lea fluides [3]
en a 'cidant de travaux de Galilde 1 4] et de Mersenne (5]. (A titre d'anecdote rappelons quc
Mersenna a ddfini lea sans (aliens dus a Vi'nteraction du vent at de fils).

Puis aux 18lbme et I9tme sigcles, ia propagation des sons continue A intdreaser dies savants plutt
connus pour d'autras travaux. Citona par exemple Young (1773-1829) pour s thdorie do la 1umiZre at du son,
Laplace (1749-1827) qui. lea premier, donne oine expression corrects de Is vitessc du son dans lair.

Enfin, vera la fin du 19Z&me silcle las premiers vdritablea trait63 d'acouarique sont publ)ifa presque
aimultandment par Helmholtz (1821-1894) 1,6) et pnr Lord Rayleigh (1842-1919) [7].

La premiZlne Suerre mandiale, die 1914 A 1918, a relancd lea 6tudes d'scaustique at de propagation des
sans da.. lea fluides sous deux aspects:

Ie premier, lid Zi la localisation de sous-marins [83,

-le second, li4 Z l'acoustiqua des canons et des projectiles [9].

Ce dernier ouvrage (rdfdrence [9]) nous intdreaaa au plus haut chef.

En effat, uniquement our l~a base de Ia gdomdtrie dans 1'espace appliqude aux Cdquatians de Ina atcanique
analytique, Eaclangan, dans son auvrage, a 6tudid en ddtail.

- l'acoustique gdomidtrigue a ndes de bouches des canons at andes baliatiques, propridtds gdartdtriques,
cns des bolides at 4toiles filantes ;

- l'acoustigce physique :audition physialogique et audition auditive ; sons, bruits, ddtonations,
infra-sona ; notions auditives de direction at de distance; infra-sona ongendrds par le aenns et. appa-
rails de ddtection , rdfraction at rdflexion atmosphdriquaa des andes sanoras ;zones de silence a cotia-
tique at balistique.



DepuiS la econde guerre mondiale de tres nombreux travaux Sur la propagation acoustique dans les
fluides et das ies solides ont vu le jour.

Les progrZs obtenus no concernent que peu lea fondements physiques des phen=Zines mais pcrmettent de
rdsojdre, grAce aux ordinateurs et aux d4veloppements des mdthodes numdriquer.,des systbmes d'dquations
reprdsentant le mieu'c possible les problbmes rencontrds.

L'objct de Is adrie des exposds qui rcespliront cette semaine a pour ambition de faire le print Sur Les
dernieros dtudes relatives A la propagation des ondes acoustiques dana Les fluides.

Auparavant nous aliens, de fagon schdmatique, tenter de ddfinir Lea classes d'ondes susceptibles de so
propeger dans un milieu, en fonction des propridtds physiques du milieu considdrd, cola dans le but da
faire apparaltre Les mdeanismes physiques qui agiront Sur Is structure spatio-tcnaporelle dc Vecnda.

11 - MIUM IDEALISE

Considdrons uno ondo plane qui se propage le long de i'axc avec la vitesse C , sans subir do
distorsion ou d'attdruation.

Apr15 un instant t~ cotte perturbation aura parcot-ru is distance Ce . L'amplitude o de cetto pertur-
bation eat fonction de (ce -= ) ..u do ( -::- - - ) Solon quo l'on conaidere la propagation le long do Ia
direction des -x positifa ou ndgatifs. Les deux functions

sent toutes doux solutions do I'dquation dondes

(2, c~-

Admttre cotto roprdsentation dquivaut a admettre que Pune des d.eux pert-irbations (1) :p ou /p'ou
les doux so tranamettont dans le milieu, do proche on proche a condition quo co milieu possalde los deux
propridtds fondamentalos suivantes:

- son dlasticit6 oat telle quo la transmission eat possible

- son inortio eat tello quo londo no so ddforme pas.

Au sons do is mdeanique des milieux continus cola sous-entend quo le milieu propagatif posaldo lea

propridtda suivantes:

(1) il oat continu et homogeno, clest-3-dire julen labsence de perturbation 'Ic milieu ost en dtat
d'dquilibre il posside partout Los mtmea propriitds physiques;

(2) coest un fluide parfait il Wy a pas do contraintos do cisaillemoent tangentiolios Zk ia direction

du mouvemont, done il nly a par friction interne (do viscositd);

(3) &oast un fluido dldlasticitd parfaito apris 1e passage de la perturbation il retrouve, sans inor-
tie, son dtat initial;

(4) son iertie thermique eat nullo

(5) is conductivitd thormique eat nullo (ou infinie suivant 1e earactbro thermodynamique du milieu
considdr5S).

Dons cos conditions, on appellora p* ,10. , ?7; respoctivoment is proasion, densitd et tompdrature
moyonnea du uilieu en iabsenco do perturbations.

Pour aboutir A l'4quation des ondos (2) deux vojes soot possibies

- lindariser Lea dquations do conservation do Is zadeanique des milieux continua.

- considdrer is relation fondamentale do Ia zadeanique ( r . Y ) et Is ddformation do 1Ididnent
do volume soumisA Iis perturbation tout en offectuant Vhypothise des potitos perturbations. En appelant

4Z lo veceur ddformation, le vocteur vitesse ltir associd t Ia perturbation do presalon p oat ddiini
par

1(3) . -~
Dons log~sdre do cetto thdorie lindaire de3 sons on milieu iddalisd on ddrontro asdment quo le champ

do vitosso zr ddrive doun potentcil

(4) Z

(cf. (10], par exemple).

Dana ce cas l'dquation lindaribe do conservation do is quantit6 do mouvesent conduit A loexpression

suivanto do Ia prossion acoustique (do la perturbation)

(5 Pd

dlceO I'dquation d'ondes tridimensionnelies SIquivalontes h (2)

(6
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Llexistence dec e potentiel acoustique 0) implique sun nidcessairement le champ de vitesse est irro-
tationnel. Parfois on appelle ce champ d'ondes de compressi . : ovdua langitudinales.

En se rdfdrant aux raisonnements de la. amlanique des milieux continus (1101 par exemple, S 2.6) on
pent d6tablir I'dquation de conservation de l'6nergie de l'onae qul s'dcrit, en appelant

T ~Is d,-nsitC! d'l.nergie cindtique

P !a densitd didnergie potontielle

91 r la densitd du flux d'dnergie de l'onde

(7) .V* - e - r =0

Dana cette dquation de con~servation de l'd6nergie, la quantitd P rest l'analogue du vecteur de

Poynting utilisd en dlectroisagndtismo.

11 est, A ce stade, intdressant de rappeler que l1irtonsitd sonore X est dffinie par

(8 Z = 4 rdt.

o0 -T reprdsontc 14 pdriode d'uneonde faonochromatiquo, on bien dans In cas d'un bruit a large bande

r -- 2Tj
Pour conclure cc paragraphe relatif A la propagation en milieu iddalisd, ott donne dana Ie tableau zi-

dessons, lexpression de grandeurs caractdriatiques de l'onde solution de (6) et de l'ipkdance spdcifique
Z do l'onde ddfinie par In rapport

(9) Z - p/zr
dana In cas de:

F t'ondo plane 1Ponde sphdriquc I 'onde cylindrique

0~ ~ ~ (aIc - "

=2'~~ I ke.4..) z t (_

__ _ __0_ _ _ Il ____ S_________t ______5_; __(_e

/0'- + IIU O DLSS qcqc x ls

Tonjoura dans In but d'introduire les expoads qui vont suivre, nous indiquons certaines situations
physiques qui pourraient prdsenter nn rdel intdret pratique et qni conduisent A des classes d'ondes parfois
non ndgligeablcs.

IIL.l - Ondes de gravitd

Ces ondes so rencontrent dan3 In can des gaz liquides (air-can par exesiple) et cules se propagent 41
is surface du liquido.
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Dens ce cax Von

(10) 4 =/.+

Sane entrer dans le ddtail des calculs indiquons simplement que l'amplitude du potentiel des vitesses

ddcrot exponentieLleient, avec Ia cote du milieu (l'axe 2 dtant perpendiculaire au plan de lPinter-

face air-e)I

'7CS o C. reprdsente la cdldritd de ces ondes de surface

111.2 -Rdflexion des ,,ndoa

Mai" ICc probiLno de rdflexion des ondes Sur une surface,
Mih's.xU ou A l'interface do deux milieux, eat L'un des plus

vieux probl~lmes qui air dtd dtudiAd. Dens le cas oii
l'interface, d~finie Sur le schdma ci-contre par

X 0 2 a un coaportement parfaitement rigide
av Sens acoustique ( /Z I -P- -o ) nous savons
bien qulil n'y a pas d'ondes transmises (onde

A 0 ) et c.ue Ilonde inridente 0, subit une
------ ---------- rdflexion totale A"

Maintenant supposona quo le milieu 11 corresponde
A un milieu localement rdactif (schdma ci-dessous),
dans ce cas , dana le milieu 11 lea ondes so props-
gent seuloxsent dana IS direction normale aux condi-
tions aux limites, c'est-a-dire quo lea ondes
transaises Sant guiddes et en rhoisissant judicieu-

MAC.,, X N;,;.. Ir aement Lea impddances des milieux 1 et II oct peut
montrer que dana le milieu I il n'y a pas d'ondea
rdfl4chies.

Cette propridtd eat, de fagon dvidento, importante
------ pour Lea applications pratiques.

Lea architoctes do l'dpoque gothique connaissajent
certainement sous formie empirique cette proprx Etd
d'ondes: guiddes par des milieux localoment rdactif.
En effet et si vous en avez lloccasion, vous devriez
visitor le Clottre go.-hique (fin du 10?me siZlole)
do La Chais e-Dieu (of un guide aur L'Auvergne) et
plus particuLiZrement Ia "Salle de lEcho" o~t deux
personnes se plagant dana des angles oppoads et se
tournant le dos, peuvent parlor A vois basso et
slentendre do fagon parfaitement intelligible.

IV - RMARQUES

Les deux exemples choisis pour prdsenter des milieux non iddalisds no comptent ps parmi Les plust
inportants. Deb; s plus complexes vous seront traitds par lea diffdrents spdcialiptes qui interviendront
au cours do cette semaxne '

- en gdndrolisant le ras do deux milieux 5 n milieux dent Lea impddances variant contin~ment on
abeutit A I'dtude des effeta do rdfraction, effets, tr~s importants dans la nature, qui conduisent a des
zone% do silence at .1 des zones do ronforcement de bruit;

- en considdrant lleffet do transport par un fluide on aboutit a l'6tude do l'effet 6e convection

- en considdrant des milioux semi-infini, ou des milieux finis on aboutit A des effota do guidage ot
do filtrage des o.ndras soncros et er. fonction de l'cmpddance acoustique dos parois A labsorptior. possible
do cemt.ines codes acoustiquoc ;

- on considdrknt ia prdsance d'obstacles on aboutit Ak l'ftude d'cffets do diffraction

- en considdrant des grandeers moyonnos du milieu variables au cours du tempa on aborde l'dtude des
ef±'cts d.: diffusion, offets complexes et non encore bien dtudids.

Eni in, l'aspoct non lindaire sera abordd sous deux formes

- I.- prtaitr concerne L~a propagation d'ondes do fortes amplitudes,

- la scande Lea aidcanismes do couplage non lindaire, gdndrateurs do sources do bruit.

y
On doiL restor conscient do ce quo cette brancho do l'aroustique, relative a lIa propagation das ondes

oreb, eat vasto at quo uouls cortaina dc sea aspects sont traitda, aspects considdrda coame constituant
Isa base d~s 6tudes do propagation en wilicu inhomoglne.
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ACOUSTIC EQUATIONS IN MOVING FLUIDS

P.E. Doak, Institute of Sound and Vibration Research, The University, Southampton S09 5NH, England

The full transport equations of mass, momentum and energy of an arbitrarily moving, thermally
iznhogeneous, fluid are considered, and also appropriate definitions of "acoustic motion" in
such circumstancej, leading to the partial dIfferential equations ax,d boundary conditions
governing such motion. The fundamental nature of the convective, refractive, diffractive
and diffusive effects of the fluid motion and thermal inhomogeneity on the acoustic motion is
made evident. A classification is made of types of problera that have been, and can be,
solved, and of the kinds of intvractions that can occur between acoustic and other kinds of
motions.

1. INTRODUCTION: SKALI AMPLITUDE FLUCTUATIMt.S 0"' A LOSSLESS FLUID ABOUT AN EQUILIBRIUM REST STATE

The human ear functions as a detector of certain pressure fluctu6t.lons in the air, and thus acoustic
motion, in a general dynatical sense, is a cless of mechanical stress fluctuations. The fundr..entale of
tse dynamics of a loscless, ideal fluid, which is in a state of fluctuating motion of snl1 amplitude
relative -o a un'.form rest state of thermodynami. equilibrium, have long been well understood. Under
such conditions, in the absence of any external force fields, the equations of mass and linear momentum
transport, to first order in the small fluctuating quantities which" constitute the only motion, reduce to

4p'/at - Poav /ax 0

and

0avi/at + Bp'/ax i - ,

respectively. Here P is the mass density, p the pressure and v (i , 1,2,3) the particle velocity.
Cartesian vector and tensor notation is used here and in what follows, with the usual convention of a
rep.ated suf.ix indicating summation. A subscript zero indicates a constant reference value (here the
equilibrium rest state value) and a prime the purely fluctuating part of a quantity: i.e., o' = p(x ,t)-p 0 ,
etc., P' 'eing of zero time avexage over a period of the notion, if it is periodic, or over a suitably long
interval if it is effectively ran:dom.

The momentum transport equation shows that v1 is irrotational, so that it can be derived from a scalar
potential, v1 - -3f'/3x1 , and further, since then a(p' - 0n*'/at)/xi - 0, one has p' - p 0 3'/at, apart
from a function of time only.which space-time causality coisiaorations require to be zero. If the fluc-
tuations are rapid enough so that there is not time for any fluid clecnt to exchange heat with its
surroundings by the usually relatively slow process of thernal diffusion, then p* will be adiabatically
xelated to p': i.e., p' - c

2
p', where c

2 
- I/p , p being (a;'/2p), where S is the entropy (this subscript

notation for thermodynamic partial derivatives is uRed throughout). The quantity c is called the speed of
sound. In an ideal gas, c - p/P and is thus proportional to 0I, where y is the ratio of specific heats
and T is the absolute temperature. With these relations among p', p' and €', and c = c 0 , being evaluated
in the quiescent reference state, the mass transport equation becomes

a%'/px2 . (l/c2)a20'/at 2,

t:,e homogenious scalar w-ave equation, 'hich ias the primitive n, 'e solutions f. (t+r/c0 )/4rr, where r = lxii.
These eolutions show that ony small, adiabatic pressure, density, )r velocity potential fluctuation in an
otherwise quiescent equilibrium rluid is composed of waves of unchanging form propagating t. constant
speed c0 relative to the fluid in its equilibrium rest state. Such w.yes are commonly called "acoustic
waves".

The mean energy density associ.ted with this acorstie weve motion is

(1/2)p 0 v' 2 + (1/2) W2/0 0c2,

the sum of the kinetic and potential energy densities (an overbar indicates an appropriate time av=ragel.
The potential energy density, of course, is the energy stored elastically in the adiabatic compression of
the fluid (not isothermal). These energy densities, for any individual travelling wave, are "locked" into
the wave and travel with it. Since the fluid has been assumed lossless, the total energy must be con-
served, and hence the mean intensity vector (energy flux) Z p'v, is solenoidal: i.e., i/axi = 0.
Since the wave equation is linear, the Principle of Superposition applies: any sum of soluttons is also
a solution. Thus constructive or destructive interference occurs among waves ar" 'ving at an obserVation
point by different paths (due to reflections, say) or from different sources. Finally the Principle of
Reciprocity also applies: i.e., e.g., f+(t - yil/c0 /4Ixi - y. 1 f(t - IYj - x 1/c0)/477y, - x I
the wave observed at xi 'rem a "point" source at y is identical to that observed at y rom the sake
"point" source at xi. Since P0 and c 0 are the on y material parameters involved, it is evident that such
wave motion is a characteristic behavioural property of any material having inertial mass and linear
(Hookean) elasticity, the speed of propagation being determined by the square root of the ratio of the
elastic modulus, here yp, to ths wss density.

If the fluid is in uniform motion at a constant velocity, (V 10,0,0) say, then since the wave motion
s relative to the fluid equilibrium state, the wave equation again applies but in a co-ordinate system
,aving the same uniform motion: i.e., (&I - xI + V10t, x2' x3)" A Galilean transformation of co-ordinates
for a wave field 0'(El,x 2,x3,t) into ' (x1 + V10t, x2, x3, t) then describes the uniformly convected wave
motion in the fixed (xi,t) co-ordinates. Thus, the appropriate "acoustic" wave equation in the fixed
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v -ordinates for a fluid in uniform thermodynamic equilibrium but in uniform m)tion with constant velocity
' i 0 is

a,'/) - 2/Dt,

where here B/Dt - 3/3t + Vioa/ax .

It is therefore evident that the case of uniform fluid motion can be easily transformed into formal identity
with that of a quiescent fluid. For this case of uniform motior, the relationships between p' and P' and
between vi and 0' remain the same, but p' - p0UT'/Dt.

2. THE GENERAL CASE: THE TRANSPORT EQUATIONS

The situation can be essentially different from that for a quiescent equilibrium reference state,
therefore, only if the reference state is one of non-uniform motion, or is thermally non-uniform. The
possibility of the existence of some recognizable form of "acoustic" wave motion in the gereral case
clearly must be considered in the context of the full transport equations of the fluid for mass, linear
momentum and energy. These are, respectively, for a homogeneous fluid subject to conservation of mass,

ap/at + 3(pvi)/Dxi = 0, (1)

D(pvi) /t + D(Pvivj + Pij)/axj - oft, (2)

a 7 (pU + i2 1 v2i v+ p v 4 0 plv + Q (3)t V X (U4lpiv j i i I T

in which pi is the stress tensor, fi the external force per unit mass, U the internal energy per unit mass,
0 the heatjflux and QT the rate of external addition of heat per unit volume. According to the macro-
saopic laws of physics, the 2xternal ("body") force per unit volume, fit can be only gravitational or
electromagnetic in nature, and thus it is zero if forces of these types are not appreciable. The electro-
magnetic external force is, of course, the Lorentz force, and thus is zero if the fluid has no electrical
charge. The stress tensor is taken as p,)% . p6 - Si, wher- p is the thermodynamic pressure (i.e., for
U U(S,p), then p - -(U/a(l/p)) ), and V' is tle Kro1ecker delta, 0, i / J, and 6 1, i= J.
Then, for a Stokesian fluid, S Is the us8Al viscous stress tensor, in olving both shear ad bulk viscosity
coefficients, v and n, respectiRely:

S 'v j vk 4 (4)Sij a x a j t+0 j
ii~ kIx 3~ 3 n xk i

This definitton of pressure in t e general case is not a trivial matter for acoustical purposes. From
equation (4) it is evident that -q i 0 and thus for a Stokeslan fluid with bulk viscosity the thermo-

dynamic pressure p is not equal ioithe average normal stress, -i,. As thermodynamically defined, the
pressure p is the independent variable for reversible changes in the enthalpy, h = U + p/p, through
6h = T61 + (1/p)6p. Also, it is well established that for a travelling pressure wave in a viscous fluid,
the decrease in amplitude per unit amplitude per unit distance due to all viscous effects is proportional
to (4/3)p+n, and that only in pure monatomic fluids is the bulk viscosity T1 negligible. In polyatomic
fluids and mixtures, its effective value, due to internal relaxation processes on the molecular levels, is
very often much greater than that of the shear viscosity coefficient 11.

Elimination 3f the terms in Pvi only between equations (1) and (2) gives

;Zp/ax
2 

- a
2
p/at

2 
+ 3

2
(pviv - S ()/a.% a ( 10)/axi, (5)

or, with the double divergence carried out explicitly,

-vi Iv %vi 2

If the thermodyndmic state of the fluid can be ipecified by the two independent thermodynamic variables
entrop7, S, and pressure, p, so that 6p 0 p Ap + ps6S, p being I/c

2
, as before, then for small fluc-

tuations about a reference state of uniform mean velocit VU, iniforn mass dersity P0' and uniform
temperature, the fluctuating part of equation (4) becomes, to first order,

wc0 D axs' - . Pfi ' (7)ax 12 0O2 D~t
2  

soD2 x a x

which, for negligible entropy fluctuations, internal losaes and external forces, redu:es to tho previously
obtained uniformly convected wave equation. How'ver, it. th? general case, the teim -v.v ;

2
o/?x.ax in

equation (6) includes net only convection of fluctuatinq density gradients by the mean iw but s coo-

vection of mean density gradients by the fluctuating flow, and the fifUth ter' in equation (6) is similarly
a complicated mixture of both mean and fluctuating density and velocity graoient components. Since, or
an intuitive basis, and beLause the ear rei,ponds to pressure, it would Le atcractive to suppose that the
f'uctuating pressure, or some part of it, might be still inturpretable as "acoustic" in the genera) eate,
it is natural to ask whether or not some part of the velocity could be associated ith this pressure, and
thus also regard!ed as acoustic. In the qoiescent reference frame case the velocity 01rvable from thu
fluctuating scalar potential was associated with the pressure fluctuations in this way. The particle
velocity, of course, according to H1lmholtz' Theorem, can always be represented in terms of a scalar and
a vector potential: vi - Vi(x ,t)-aI(xk,t)/Dx , V (xk,t) being the solenoidal component cbtaii.ed from the
vector potential. Considerat on of the mass transport equation snows immediately, however, that this
association does not extend advantageously to the general case. It is

Ip/at 4 (V Wa/x i )90/xi -p ?
2 
/ax,

2  0.()
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In this form, the equation is non-linear and involves product terms of exactly the type it was hoped to
avoid, with both mean and fluctuating solenoidal velocity components present. Also it appears that the
scalar velocity potential may have both mean and fluctuating parts, and that both these can be present.

3. THE GENERAL CASE: DEFINITIONS OF ACOUSTICAL, TURBULENT AND TIERMAL MOTION

I1, however, the linear momentum density, rather than the particle velocity, is regarded as the primary
dependent vectcr field to be determined, and it is represented in terms of solenoidal and irrotationa: com-
ponents, pvi - BI- 3/axl, 3Bi/ax i - 0, then the mass transport equation becomes simply

ap/t _ a,/ax 1 
2  

. 0, (9)

which is linear, involves only p and the scalar momentun potential J,, and with p - p(S,p) immediately
suggests and permits definitions, in the general case, of "acoustical" (i.e., "adiabatic") and "thermal"
(i.e., "isobaric") components of both p and p:

3Ps 1 + , S 2VA +2 2

at 2 at ~S at 2 2 (10)
c ax1i ax1  axi

These definitions are wholly consistent .dth the linearly independent acoustic and thermal diffusion types
of motion that are well known to apply for small amplitude fluctuations about a uniform quiescent reference
state. Furthermore, since a2  i -0 for a time stationary motion (i.e., when p " (xi) 41' (x ,t), with
P' having a zero time average over suitable time intervals), then a /ax is both irrotational anh solenoidal,
so that V can be taken to be zero without further loss of generality, wfth the entire solenoidal menn
momentum being represented by B . (A vector which is both irrotational and solenoidal can be represented
either as the gradient of a scalar potential satisfying Laplace's equation or an the curl of a vector
potential each of whose Cartesian components satisfies Laplace's equation.) The uniqueness of the fluc-
tuating momentum components, B

i ' and "a','x 1 , is subject only to an appropriate allocation to one or the
other of any fluctuating momentum field component which turns out to be both solenoidal and irrotational,
in any particular case.

These definitions lead directly to an expression for the total linear momintum density, in the general
case, that is a linear superposition of a uniquely defined mean component and similarly uniquely defined
fluctuating "turbulent", "acoustical" and "thermal" components:

Pvi(x , t) - Fi(xk) + Bi'(xk,t) - a"A'(xk,t)/axi - a T(x,t)/axi. (11)

Note, with reference to equations (10) and (11), that since ' - 0 then, even if and 4 are not zero,
nevcrtheless A + T - 0. Note also that, as in this general case no other precise defoinition of turbulent,
acoustical and thermal fluctuations has been previously proposed and accepted, the terms usually having
been used loosely, without consistent definition - and this applies to both "turbulent" and "acoustical" -
these definitions do not necessarily correspond exactly to motions previously described elsewhere by
similar words.

In terms of ' and Bi, the momentum transport equation becomes

aB + ( a 2± i+2 L -_iB If (2a at.-( (i j +ax axi ax e P ax pf" (12)

With B - B + B ' and p - p + p', and with Sp = p 6p + pS6S, all the non-linear terms in equation (12)
ich represent i(p viv)/Dx , as well as all the lnear terms, are now explicitly classified as comprised

of specific mean, turbulent, acoustical and thermal factors, as also are, of course, the terms In equations
(10) and (11).

4. THE GENERAL CASE: ACOUSTICAL MOTION EQUATIONS

For investigating the nature of the fluctuating part of equation (12) it is notationally convenient to
consider its time derivative so that all fluctuating terms will be clearly visible. With coefficients in
a mixed notation, for compactness, this can be written as

a 2 B % a (2. aBi -2L asi+vL o
+ )+ viva at 2v~(~ '~ A

at 2  ax i at at 2  axi iia t a a~t~ at "iat (Pi (

- vj 2 (Pv L (pf

The last two terms on the left hand side of equation (13), taken together, are solenoidal. The divergence
of equation (13) is thus, after elimination of p and P by use of equation (10),

a 2 2V 2 k 22V_!J S 2 ;S aB 2
-x xi { (ci i v Xk2 at2 iJ ax at at 2 at ij at

ax iat (pf J. (14)

This is a fourth order inhomogeneous equation for ', with some obvious partial similarities to a convected
wave equation. The equation would be expected to be fourth order, for two reasons. First, apart from
the aB /at term, the left hand side terms should be of the form, as it were (a 2 /ax 2 + L )(a 2

/ax 2 + Y),
where EA is the differential operator corresponding to the acoustic part of the scalar potential,JP ', and
LT that corresponding to the thermal part, VT' this form being also obtained, of course, in the well-
understood case of small anplitude motion of a Stokesian fluid about an equilibrium rest state. Second,
,he fiuid motion, through the coefficients involving the velocity vi, makes the propagation of both
ac~nstical and thermal disturbances anisotropic. /
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For purposes of physical interpretation, equation (14, expressed in terms of p and p, insofar as
possible, is of particular interert. It is

a 2! (k a L (2 at tt) a2ax ( jT a + -L (2--1 (3,'
ax 1

2  at at2 at- ax v~..) ~ t ax2. ax ( j
a2

ax j at ax iIt . (15)

The special dynamical role of the velocity gradients, 3v /3x , is evident from eouation (IS). The other
terms involving vi are generalized convection terms for aenslty fluctuations, but the last term represents
an "acceleration" (second time derivative) of the rate of mass density change which depends on the
divergence of a vector composed of products of velocity gradients by the momentum rate of change. This
"acceleration" of density rate depends on all three fluctuating momentum components, turbulent, acoustical
and thermal, and the acoustical component cannot readily bp expressed in terms of p', because it involves
the gradient of 0' and not its Laplacian. From the momentum equation (12), it is evident that a '/at
could be written as p' + 30i'/at, where

a. 2__ a8' a2  , a
2 a t ax1 ax (Pv v~ S) + (16)ef~ax1
2 
(7t-) Xi (ax lij " ij +- 

(
o
f )

The component 'l thus would depend on the irrotational effective force fluctuations arising from the
Reynolds and viscous stresses, and the external force. However, its source terms in the Poisson equation
(16) are simply the integral with respect to time of all the terms in squat ion (15) except the first two.
Therefore, attempts at elinination of the a '/ax teem in equation (15) would lead only to an integro-
differential equation, of a form mu-h more compl~catco than the fourtl' order equation (14. for 4' .

It is clear from equation 15), then, that pressure fluctuations in an arbitrarily movng fluid are not
governed by any simple form of convected wave equation. The presence of velocity gradients of appreciable
magnitude prevents this, by introducing a single term which can locally strongly couple momentum fluctuations
of all three types, turbulent, acoustical and thermal, te the pressure fluctuations, which w'uld otherwise
propagate in a recognizably "acoustic-wave-like" manner relative to the moving fluid.

For the rearons stated and other obvious ones, the fourth order equation (14) for $', rather than the
second order equation (15) for ap/at, must be regarded as the fundamentally correct basis for analyzing the
interrelationships among turbulent, "ccustical and thermal types of motion in an abierarily moving fluid.
However, a "mixed" expression for ap/at can be obtained from equation (15), which can be useful and of
interest in some situations, and which, for the most common case of zero external forces, is relatively
simple. By using the momentum equations %2) and (12), with fi = 0, the last term on the left of equation
(15, can be written as

? ' I ( 2k' av

ax- ax -ax + 2 (pvjvk) .

Equation (15) thus can be put in the form
.2 (1 2 a 2 A - -vi (?! . as' 2 (v 16 as

(2i 2aax)2 at at 2  at ax i at ax j ax j ex., 3xiax i Iat at

a (2 ai (pv vk) (17)

ax i X x k j

The validity and usefulness of such an expression depends wholly on whether or not the right side source
term can be evaluated, or estimated to a sufficient approximation, independently of the left side terms.
In the general case this obviously is not possible, as the "Bernouilli pressure gradients" in a(pv v )I/axk
of the right side can "cancel out" appreciable components of the total piessure gradient ap'/ax cl 'he
left side. Also it is evident that in its present form (selected for simplicit. at this stage the right
side includes a term -a(2(Iv /3x )v aP/at)/ax "doubly" cancelling the term of half that value and identical
form on the left side (from 2 (vjv p/at)x x. ) With this term extracted, the remainder of the right
side is a{2(vi/ax)(PVkav /ax) 2x and the linearized forms of this are of interest for cases of
parallel" sheared; or onl1 slightly divergent, mean flows. For the "parallel" mean flow case, where vi
(V1(x2),O,0), say, it becomes, to first order, simply

aV1  av2  ,V12 'v
2
'

a 1 21v k a 2 1

since v 2 - 0. In such a case, then, the "source" term depends on only ne of the fluctuating2velocity com-
ponents. Note that if p is similarly stratified, p - p(x2) , the source terne becomes a2(;(aV /ax )v2' )/ax1

2
.

For an axisymsetric divergent mean flow, a rather similar result would be obtained, but with oth fluctuating
transverse velocity components involved.

As the simplest of the "mixed" equation formulations, equation (IF can be notationally compressed down

to the "acoustical analogy" form:

. (1 2
2  82 - - 3

4) ( 2 at ax at ( ) 
+ -  

(PS t axax at (Pvivj -Si,), (18)
ax

2  
at C i at

the last two terms on the right being regarded as independently estimable (to some degree of approximation)
forcing terms.

S. BOUNDAMY CONDITIONS

Boundary conditions are derived from the transport equations as limiting cases. As mass, linear

'\/
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momentum and energy densities, and their rates of change, and also external forces and rates of heat
addition, must be everywhere finite, integration of the three transport equations (1-3) across any fixed
surface in a region containing the fluid, in the direction n normal to the surface, shows that PVn,
Pv V + p and (pU + pv 

2
)v + p v + 0 all must be continuous across the surface. At a mutually,, n 'n

impenetra~e interface between two'gissimiar continua, moving or fixed, the conditions become continuity
of particle displacement (so that no "vacuum" can be formed at the interface), Newton's Third Law of action
and reaction for the internal stresses p , and continuity of stress energy and heat flux, PinVi + On' In
fluid mechanics the former conditions, t Rankine-Hugoniot conditions in general form, are appropriate
across near-discontinuities in fluid properties, such as shock waves, or thin shear layers. The latter
condittons, however, are the appropriate ones at the moving interfaces between fluids and solids (or other
immiscible fluids) which are common in acoustics.

6. MEAN ENERGY FLUX

The momentum potential formulation also leads to definitions of mean, turbulent, acoustical and thermal
energy fluxes, and to certain significant relationships among these. The transport equation for total (or
"stagnation") enthalpy, H h 4 (1/2)vi2 - U + (p/p) + (1/2)vi2, is

s a (Pn ) +hLp1 +Pft ax + Q,,. (ag)
Time averaqing showa that

(pHv Sijv, +0) pfjv.+ Q, (20)

that is, that the mean flux pHv - S + 0 hes only the external sources of v and QT and is solenoidal
everywhere that these are zero.j Thlejmean flux Fpv can be written as the sum-oi a flux carried by the mean
momentum and a flux caried by the fluctuating mome~tum, v- - F(pv ) + H' (0v I', or, by virtue of the
expression for (Ovj) ' as a sem of turbulent, acoustical and thermal tarts, equation (11), as

HPvj H B + ' BS I +'(- / x) + N'(-4/ax j). (21)

As for the momentum, then, unique mean, turbulent, acoustical and thermal components of the total mean
energy flux Hpv can be identified, and pv is a linear superposition of these.

From the momentum equation in the form
a-i + v) H S.S._. a~jk

at 2S((\xv ) + T fJ, (22)

where Q is the vorticity (the curl of the velocity), a separate expression for If pv can be obtained.

Taking the time average of equation (22), and multiplying it scalarly by (Pv) gives, after some
rearrangement,

S +Tjk + ( TS + (0 I( 1 +)(,

Sovj f (23)

Then, subtracting equation (23) from equation (20), combining and rearranging terms, with use of the time
average of the entropy transport equation and the fact that, since the triple scalar product (pv ) (Qxv )
is identically zero, (ovj)(ekX~ij" -(Pvj)' (lkxvi)3, gives, exactly,

T'does not appear in equation (24). In the absence of external forces, and when irreversible effects

by fluctuating Coriolis accelerati6ns. It an be positive or negative, corresponding, respectively, to a

source or sink of such a mean energy flow. As previously mentioned, it is identically equal to
+ Vj (R xvi)j , and in the case of an internally wholly lossless fluid

aSi' ') ( ' 1 1 (25)ax r v ) (pvj)' (lkxvi) ' - (pvj) ('kXVi) -x H(pv)

showing that sources of the mean energy flux carried y the fluctuating momentum are locally sinks of that
carried by the mean momentum, and uece versa.

In terms of the specific vorticity, y the fluctuating Coriolis acceleration source term is

; - (svj)' { (/P) 'x(s-vi)}j = (pvj)(0k/p) 'xlPvi) ') , (26)

Swhich shows that it depends on the mean momentum, and on each component of the momentum fluctuations. Thus,
both the mean intensity associated with tne fluctuations and its sources are expressed in terma of the
turbulent, acoustical and thermal fluctuations.

'1 7. POSSIBILITIES FOR SOLUTIONS
SBecause of their complexity and non-linearity, the equations for the fluctuating psresre and other J
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field variables in an arbitrary fluid flow are not in general amenable to analytic solution. The only
case for which analytical methods are readily available and applicable is that of small amplitude fluc-
tuations about an equilibrium quiescent (or uniformly moving) reference state, and for fluids of
relatively small viscosity and thermal conductivity. In this case the equations can be reduced to a set
of three uncoupled partial differential equations with linear coefficients which are readily solved by
standard analytical methods: i.e.p separation of variables, special functions, Green functions, etc.
For this case the turbulent vector momentum (or velocity) potential and the thermal scalar potential
satisfy diffusion equations and the acoustic scalar potential satisfies a form of scalar wave equation
with attenuation due to viscosity and thermal conductivity.

For analytic solutions for more general cases, the most usual analytic approach is some form of
perturbation method, with the diffusion and scalar wave equations of the equilibrium quiescent reference
state problem used as starting points. Such methods, including those of geometrical acoustics, are
particul,rly well suited to problems in which the variable coefficients in the full governing equations
can be regarded as slowly varying. For cases where these variable coefficients are rapidly varying, but
only in regions of relatively limited extent, these regions can often be effectively replaced by dis-
continuities and the corresponding complicating terms in the equations by appropriate "Jump" (boundary)
conditions.

Finally, recourse can be had to numerical computation, either by finite difference methods or general
weighted residual methods (Galerkin, finite element, etc.). 13y such methos, with digital computers,
solutions of the linearized forms (i.e., with the coefficients riplaced by their mean values) of equations
such as equations (14) or (17) are possible, so that the convective effects on the fluctuations of mean
velocity and mean temperature can be calculated for particular cases.
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SUMMARY

Starting with a historical review of geometrical acoustics, a treatment o' sound wave

propagation is given including the effects of temperature and wind gradients.

In section 4, analytical solutions of the wave equation are presented for an iso-

thermally and a polytropically stratified still atmosphere and fe- n atmosphere

with wind gradients and wind direction changes as well.

These solutions are valid beyond the scope of geometrical dcou,,tics.

Finally, dispersion of infrasound is dealt with.

1. INTRODUCTION

The propagation of noise in a real atmosphere is a matter of different phenomena. Tem-
perature and wind gradients, gravity stratification, air viscosity, humidity, finite am-
plitude effects and nonequilibrium behaviour of air lead to reflection, refraction, scat-
tering, diffraction, dispersion, absorption, nonlinear propagation and relaxation and to
an flmost unlimited variety in the possible geometry of the wave fronts and the rays. In
the limiting case of zero wavelength, this geometry can be described by means of geometric
acoustics. This appromixation neglects the effects of viscosity, heat conduction and gra-
vity, though it can be applied in most cases of practical interest since sound absorption
in the air is very small and the state of the atmosphere in general does not change con-
siderably over a distance of a wavelength. Then, due to the fact that in the so-called
"ray tubes" the acoustic energy is conserved, the acoustic intensity at any point of the
atmosphere can be calculated. From the scientific point of view geometric acoustics now
is in its fin. stage of development. However, application of geometric acoustics often
fails for diff,-ent reasons. Thus, it requires in most cases more knowledge about the
atmosphere than is available. The numerical ray tube area method is very cumbersome and
probably therefore not often used. On the other hand, there are severe cumulative effects
over long distances, ranging from 700 to 7000 m. Geometric acoustics is also limited in
range of application, diffraction, scatterinq and dispersion of low frequency waves are
most interesting under conditions for which the basic assumption of geometric acoustics is
not valid. All this implies the need for much greater care in the application of analyti-
cal techniques. That means analytical solutions of the wave equation are required, which
oescribe long range effects as there are refraction, reflection and dispersion. Once aval-
lble, these solutions can serve as initial solutions for methods describing diffraction,
scattering and absorption and for characteristic methods describing nonlinear effects. This
paper deals with geometric acoustics in paragraph 2 and with analytical solutions of the
wave equation available at this stage in paragraph 3.

2. GEOMETRIC ACOUSTICS

2.1 Historical develo~ment

A wind gradient as a cause of refraction of sound waves was suggested by Stokes (1857)
[1). Reynolds (1874) [21 pointed out that changes in air temperature would also cause re-
fraction of sound. One of the first theoretical accounts of these two effects was given by
Rayleigh (1896) [3]. Barton (1901) [4] pointed out that in the presence of wind the direc-
tion of a sound ray in space is not necessarily along the wave front normal. He considered
the case of a linear increase of wind speed with height and derived the equation of sound
rays from a source at the origin. In the case where the wave front is horizontal initially,
the ray paths are parabolas, and the wave front remains horizontal during propagation.
Parabolic sound rays have been obtained also by Matthiesen (1899) [b], Mohn (1892, 1893,
1895) [6,7,81 and JNger (1896) [91. The inverse problem of deducing atmosperic properties
from observations in sound wave propagation was dealt with by Ldwy (1919) 1101. Abnormal
propagation of sound waves has been investigated by Borne (1910) [111, Fujiwhora (1912)
[12], Everdingei (1915) [13] and N lke (1917) [141. Kommerell (1916) [151 and Lamb (1925) L
[16] applied geometric acoustics to a model atmosphere with a linear temperature profile.
Emden (1918) [171 and Milne (1921) [181 gave the first generalized treatments of sound
propagation. Emden detected that the path of the wave front normal is a curve of single
curvature whereas the ray is a curve of double curvature, if wind force and wind direction
are functions of altitude only. Using Milne's paper, Groves (1955) [19] presented an even )I more generalized treatment of sound prpagation by means of geometric acoustics. Some years "
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In presence of tangential components of u to the wave front any particular wave front
element propagates with the ray velocity, which is not in the direction of the wave front
normal and can be obtained by substituting (10) into (7) giving 3

S . ar  (12)

ak k

This is the vector sum of the local sound velocity in the direction of the wave front nor-
mal and the velocity d with which the sound in carried along hy the moving fluid. A ray is
then a line such that the tangent to it at any point is in the sane direction as the ray
velocity given by equation (12).

The wave number vector k is always in the direction of the wave front normal n of the
wave front and not necessarily into the direction of the ray velocity. The relation between
1 and t is given by

kLk (13)

where
1/2

k = (k.k) (14)

According to (13) and (14), the change in direction of i is given by

a. .= k 1 k ak.1 (15)

at at k k at k at

On the other hand, it follows from (9) and (7) that

-- - grad a - [(i) k x curl (16)
k at k k

= -grad aph

With (16) equation (15) can be rewritten to give

atn -grad aph + n(n .grdd aph) (17)

which coincides with equation (19) of Groves [191 paper. The curve of the wave front normal
is then defined as a line such that the tangent to it at any point is in the same direction
as the wave front normal. Introducing the element of length along this curve dt = aphdt,
we can rewrite (17) to give

U-, -a - grad ap+ -n-(g r a d p(18d a ph

In steady propagation of sound in an inhomogeneous medium at rest (' = 0) the curve of the
wave front normal coincides with the ray and the phase velocity with the ray velocity as
well. Furthermore, the phase velocity then is equal to the local sound velocity

aph = a (19)

where a is a given function of the coordinates

dn n (n.grada) (20)- grada +

As is known from differential geometry, the derivative d /dt along the ray is equal to /R,
where N is a unit vector along the principal normal and R is the radius of curvature of
the ray. The right hand side of equation (20) is apart from the factor I/a, the derviative
of the sound velocity along the principal normal. Therefore (20) can be rewritten to give

x - 1 (N.grada) (21)
R a

which means that the rays are bend towards the region where a is sma'ler. However, in the
general case when is nonzero, the equations (12) and (17) have to be solved simultaneously
in terms of the initial form of the wavefront in order to obtain the geometry of the wave
front at a later time. The procedure of solving (12) and (17) can be simplified by using
trace velocities introduced by Groves (19] as defined in the next chapter.

2.3 Groves method of trace velocities

The initial wavefront at time t 0 is given by

r r(a,$,O) (22)

I /
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and by

r - r(a,2,t) 
(23)

at a later time (See figure 2). a and B are taken as pardmetric coordinates to the points

of the wavefront. The unit normal at the point (a,B)

: i(x,y,z) = (a, ,t) k24)

can also be 4pfined as (x,p,v) where x, v, v are the direction cosines of n

n 1 = X a + V 2 (25)

The velocity 'U of the mediui, then is

ii (uv~wl(26)~

Groveb now introduced the trace velocities

-- V X vV.. U = (27)

which can be int: p, ated after Groves (see fig',r 2). The tongent pldne at tne point ,S)

of the wavefront at time t cts tLhe - y ad z-axis ,t the points X, Y, Z respcctively.

Ihese intersection points move with the ,:locitieq aDh/I, 3ph 1 , . anh/v, i.e., v x , vy, v z

along ie x-, y- , 7-axis respectively. Now repiad(n, tne dirpction cosies of the wavefront

normal by the trace velltie the phase velocity (G, 3) can Pwritten

V x  V Va+ a + + 1

ph1 * 1/2 1 1 1 i~

vx Vy vz  vx vy vz

Now, introducing the new vector h(.,o,t) defined by

vx Vy V

with some rearrangement Groves rewrote equdtion (17) as

at + (ha' h.u')h + grad(ha+h.u) = 0 
(30)

Herc 4' and u' are t local changes with the time of sound velocity and wind valocity

respectively. hu.eVer, Si,.c a sound wave is very fast, these changes in general can be

neglected. lhe vector h, of rou,;P. depends oo the choice of reference axic Now, equa-

tion (30) has to be solved simulatznp.u:iv with (12)

2.4 Sound propagation in tne atmosphere

For the sound wave propagation in the a.mopshere, the follo.;n simplifying assumptions

can be made:I
1) As explained at the end of the above chapter sound velocity a and wind veiocity
are independent of time.

2) Furthermore, u and a are independent of horizontal displacements. Th is means that the

distribution of meteorologic lows and anticyclones is neglected and the cu|vature of the

earth as well.

Thus, wind velocity and sound velocity are funictions of altitude only. If the z-axis is

taken in the vertical direction the relation

o u(z) a = a(z) (31)

holds.
From (30) it then follows that

vx  d( , ) (32)

Vy =b(,B)

which means that along any ray (a,a), v and v remain constant. Following Groves 114J

d and b are introduced as new parametri coord~nates

d d(a,$) (33)

b b(aa)

A characteristic velocity

• .f I\
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ac 1 1 (34)
d2 

+b
2 
z

is introduced. To an observer on the ground receiving the ray (d,b), the sound appears to
be travellina along the ground with velocity ac.

With the abbreviation

a z a~ (1 - u(Z) - V(Z)) (35)

and using (28), (32), (34), the trace velocity in the vertical direction is found to be

wa ! d(a2 +w -a2)/2)

vz r a (36)
a2 - a

2

1he phdae velocity reads in terms of the new coordinates

2 2 2
aph C a t( tw (37)

a z + w

2.4.1 L -w of refraction

The law ot ,-r action is found by formulating first the direction cosines of the wave
front normal in terms of the new coordinates by means of (25), (27), and (32) and then
cub~tituting aph from (10)

(L) , .z) . ,v(z) + Vw(z))

(38)

(a(z) + xu(z) + lv(z) uw(z))
b

For every particular ray, i.e.; fixed values of d and b, these relations give together with
(25) the direction cosines of the wavefront normal along the ray. When the wavetront is
parallel to te y-axis (I 

= 
0), and when there is no vertical component of the wind

a_ i u(z) d (39)
A

This formula also has been deduced by Rayleigh f3]. When u(z) = 0, Snell's law of geome-
trical optics is obtained

A a Z) 
(40)70 ao

where x and ao are the initial valu' of direction cosine of the wavefront normal with
the x-axis and sound velocity respectively.

From (40) again it can be seen that, as stated with eqautio. (21), the rays are bend
towards the region where the soupd velocity is smaller.

From the equations (38) the relation

bd = (41)

can be deduced. This means, as stated already by Milne 1181, that along any ray the wave-
front normal remains parallel to the same vertical plane.

2.4.2 Solution forwavefront andrays

The ray velocity (12) can be written in components as

-x = u(z) + a(z)x(d,b,z)
at

a v(z) + a(z)u(d,b,z) (42)

z
t w(z) + a(z)v(d,b,z)

i /



where the direction cosines A, v, v can be found from (38) or by means of (23), (27) and

34 (32). The integration of (42) yields the equation of the wavefront at a later time.

x x(a,b,z) c xo(a,b) + u Lz)z dzJ w(z) +a(z)v(a,b,z) d

zo(a,b)

y y(a,b,z) yo(a,b) + wdz (43)

zo(ab)

z dz
t t(a,b,z) to  + w(z) + d(z)v(a,b,z)

z0

The above equations can be evaluated for sDecial forms of a(z) and tj(z) only. In other
cases, numerical methods would have to be util ized, see also [281, {29] and [301.
In chapter 2.3 to 2.4.2, I make considerable use of the results obtained by Groves [19]
Further details can be studied in [191.
2.4.3 Still-atmos h E .with constant decayofsondo i

For aircrafts flying at high altitudes in general, the temperature stratification is
more important than the vertical distribution of wind face and wind direction. Further-
more, the model of the atmosphere can be simplified by assuming the sound velocity to be
a linear function of altitude z, that is,

a(z) = a, - mz u = 0 (44)

where z denotes altitude above ground, the constant a9 is the speed of sound at the ground
and the constant m the decrease of sound with altitudg. This variation agrees substantially
with measured data at the atmosphere up to altitudes between 35 000 and 40 000 feet. For
a standard atmosphere, a9  1,116 ft/sec, and m - 0,0040 ft/sec per foot. These values
were used by Lansing and considerable use of the results obtained in his paper [211 is
made in this chapter. Now, Randall [31 and Lansing [21] applied Fermat's principle of
least time in order to obtain the rays. Introducing (44) in (43) gives the same result.
For this particular atmosphere the rays are circles

ao 2 ao 
2  

ao2
(\x 

2
+y
2 

+ - tanc) + (z-zo- -) = -2-sec
2
c (45)

m m m

where ao  a9 - mzo and c is the inclination of the ray to the horizontal at the origin
cf the soundgsource. These circles are lying in vertical planes through the origi,l of the
osturbance having their centers located at the altitude a /m = 279,000 feet, the so-called
height of the virtual atmosphere which is the theoretical galtitude at which the speed of
sound vanishes. In the standard atmosphere, the speed of sound decreases up to an altitude
of about 40,000 feet. Above this altitude there is the stratosphere with constant sound
velocity (i.e., isothermal atmosphere), for which the geometry of rays and wavefronts is
the same as in a homogeneous atmosphere.

For the lowest layer of the atmosphere between ground and an altitLde of about 40,000
feet, the so-called troposphere, the above assumption (44) is a very good approximation.
Then, the shape of the wavefronts associated with a still point source is obtained by the
system of surfaces which are orthogonal to all the rays (45) through the position of the
point source. The chape and growth of a wavefront in an atmosphere with linear decrease
of the speed of sound with altitude is (see references 31 and 21)

(X-Xo) + ( .Y o ) + - -o sinh mt (46)

1 m 
2

where (xo,yo,z0) are the coordinates of the position of the sound source. The wavefronts
form a system of spheres with centers lying on the z-axis through 'he origin of the
disturbance. Figure 3, taken from (211 shows a vertical cross section of :ome rays and
wavefronts.

The center of the wavefront gradually moves down the z-axis as time increases, because
the sound speed gradient causes the suund to propagate more rapidly in the directioq of
the ground. If the sound source moves through the atmosphere, it can be represented by an
infinite number of fixed sources located on the flight path each having a nonzero time
dependent source strength only when the moving source just passes its position, e.g. lights
switched on and off in a series to advertise something. Then the position of the acting
source is a function of the retarded time given by the flight path, xo(T), yo(T), z0(T).
In the case of supersonic source speed the spherical wavefronts form an envdopping surface.
To illustrate this an accelerated source at supersonic speeds in a homogeneous atmosphere

1\~
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is chosen, figure 4. For axisymmetric flow, the y- and z-axis collapse into the /y MF -

axis, so that three dimensional unsteady axisymmetric flow can be represented with three
coordinates only. The growth of the spheres then is represented by the Le Monge cones, 7
see figure 4. Every Le Monge cone is fixed with its apex end to the flight path. Due to
Huygen's principle applied to three dimensional unsteady flow, the areas of dependence and
of ifrfluence collapse into the surfaces of these Le Monge cones. The envelope formed by
the distribution of these cones is also known as Mach wave. The tangent between Le Monge
cone and Mach wave is known as bicharacteristic. The intersection lines between Mach wave
and planes of constant time dre for constant source speed the characteristics. It is obvious
that different verticel stratifications of the atmosphere in combination with ditferent
flight paths (straight, inclined, longitudinally or laterally accelerated) lead to an al-
most unlimited variety in the possible geometry of Mach waves. For the particular case of
constant decay of sound speed with altitude, Lansing (21] has plotted the intersection line
of the Mach wave (i.e., shock wave) with the ground, see figure 5.

2.4.4 Atmosp2heric wind gradients near the ground

The case of an isothermal atmosphere with a horizontal wind is now considered. Then, as
the wind velocity increases linearly with altitude, it follows that the ray travelling in
the direction of the wind is deflected towards the earth (Figure 6), while a ray travelling
against the wind is deflected upward. The observer at P will not receive the ray leaving
the sourre in his direction. Only a small number of rays will arrive at P due to diffrac-
tion. However, in the atmospheric wind boundary layer, there is not only a decrease of wind
force while approaching tc the ground but also a change of wind direction. In the case of
a stably stratified atmosphere, the wind direction changes by 45 degrees. This is the so
ctlled laminar Fkman wind boundary layer, see figure 7. In practice, the wind shear may
vary from 0 to 180 degrees in dependence of different weather conditions. It seems to the
author of this paper that windward and leeward sound propagation cannot be urderstood
without the vertical distribution of wind direction. Measurements done in the past scatter
considerably around a theoretical line calculated from vertical wind force distribution
only, see figure 8, taken from (321. Due to wind shear atmospheric sound wave propagation
becomes much more complicated because the rays will be a curve of double curvature.

2.4.5 Simultaneous-wind and sound velocity gradients

In a real atmosphere wind gradients and temperature gradients act simultaneously. Small
gradients lead to considerable curvature of sound rays. The illustrations in figures 9 and
10 are taken from a paper by Emden (171. Figure 9 illustrates sound propagation, if tempe-
rature drops by 6.20 per kilometer. There is no wind between ground and 370 meters, above
this altitude wind increases linearly by 4 meters per second per kilometer. The rays travel-
ling windward are deflected upwa-d by the temperature gradient and by the wind gradient,
whereas the rays propagating along with the wino initially are deflected upward by the
temperature gradient and then due to the wind gradient are deflected towards the earth. A
large zone of sound shadow is created extending up to 159 kilometers on the leeward side
of the sound source. Figure 10 shows sound propagation if temperature drops by 3 degrees
from ground up to 910 meters and wind increases by 2.13 meters per second within this
altitude. Above this altitude temperature drops by 3.65oC and the wind by 3.28 meters per
second both within I kilometer.

2.4.6 Worst.caseofg.9round to-grond.sound_ ropg ation

Eventhouih geometry of sound wave propagation in atmposphere is manifold the worst case
probably can be reduced to one simplified model of the atmosphere :, that is, the midwind
sound propagation during night, when there is a temperature inversion near the ground, so
that both wind and temperature gradients bend the ray downward. Investigations (331 in-
dicate that the rays then are segments of circles with a radius of 5 km, see figure 11.
This also has been taken into account for german standard regulations [34] for outdoor
sound propagation. It can be seen from figure 11 that the shielding effect of walls aroun-
an airport does not exist in this worst situation, since the sound jumps along a circular
segment over the wall. Walls only contribute to reduction of soundimmission if they are
close to the sound source. Furthernore, there is a uoundary layer at the wall, see fig.,re
12, bending in addition to the above effects the ray towards the earth on the leeward side.
Thu-, Maekawa's (35i sophisticated diffraction theory for a still atmosphere cannot be
applied to this situation.

2.5 Conservation law of acoustic energy

In absence of viscosity and heat conductivity the sound is propagating by isentropic
compressions and expansions of the medium and the distribution of acoustic energy can be
determined after ray and wavefront georietry. In a motionless medium conservAtion of the
acoustic energy density E oefined by Rayleigh (31

2 ,2
p0q 

P2

E =--- + - 2 (47)
2 2p0a2

00oq .2
gives the desired intensity. -2- is the kinetic acoustic energy and is the potential

acoustic energy. Then there are no more complications than those involved in the ray Seo-
metry. Guiraud (1965) 1361 presented a quadrature along the ray in order to calculate tUe
acoustic energy. The law of the conservation cf acoustic energy was extended by Blokhintzev
(1946) [26,271 to a medium with steady motion. Blokhintzev considered a modified energy den-
sity E .'/.. where w' is the frequency for a fixed observer and w the frequency for an
observer .,oving with the undist,,rbpd medium. Garrett (1967) [371 has given an interpreta- 2
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tion of the Blokhintzev invariance in terms of another invariant E/.,, which is of the

* type introduced by Waitham (1965) 138], but Garrett restricted his consideration to a me-
2 2 dium with undistributed steady motion. Ryzhov and Shefter (1962) [39] applied the
,31- Blokhlntzev invariance to ray tubes and considered weak shock waves.

The same method was applied by Hayes (1969) [40] to the calculation of the sonic boom
in a stratified atmosphere. Hayes [411 [42] thowed that volume integrals of E/. are
conservLd with the undistributed flow unsteady and applied this result to a wave tube.
He obtained the basic law in the form of Garrett

a (__) t V (Ear) = 0 , (48)

at W (a

where v is the del operator. The integral of E/. over any volume whose boundary ioints move
with velocity ar is invariant. This result was also mentioned by Bretherton and Carrett
(1968) [43]. The acoustic energy is conserved in ray tubes, see figure 13.

A ray tube is formed by sound rays associated with a specific value of the phase. With
n being the area of a ray cut by a wavefront, Hayes [421 found that the quantity EaA /W

2

is constant along a ray, a function only of phase. This is a generalization of Blokhitzev's
[26] result. For further details Blokhintzev's [261, Hayes' [42] and Candel's [441 paper
may be used. It is evident that in an atmospheric boundary layer, when the ray is a curve
of double curvature, the ray tube is difficult to determine since it is generated by rays.
For this reason it is desirable to find closed form solutions of the wave eqiuation descri-
bing the effects of temperature, wind force and wind direction gradients.

3. ANALYTIC SOLUTIONS OF THE WAVE EQUATION

The atmospheric sound wave propagation often is under conditions for whicha treatment
by geometric acoustics would not be valid as there are for example the effects of grdvity
on infrasound propagation, scattering and diffraction of sound. It is ther'efore,not only
for convenience, desirable to use a complete wave theory, rather than that theory of
geometric accustics.

3.1 Homogeneous atmosphere

The analytical solution for the wave propagation in a homogeneous atmosphere is well
known, see for example [451 or [461. The general solution for plane waves is given by

= f
4
(at-x) + f'(at+x) (49)

representing the propagation of independent waves in the positive If+) and negative (f-)
x-direction with the sound velocity a. The arguments (at-x) and (at+x) are retarded times.
The potential is retarded to that time at which the perturbation was produced. The gene-
ral solution for spherical waves is

f+(at-r) f (at-r) (50)

r r

where r is the distance of the observer from the origin of the perturb tion. The two terms
on the right hand side of (50) represent the radially outward and the radiallv inward tra-
velling wave respectively. Acoustical dipoles and quadrupoles can be iound by linear
superposition of acoustical monopoles given by (50), see for example ighthill's paper
(1952) [47).

3.2 Isothermal atmosphere

In the terrestrial atmosphere, due to the influence of gravity, ;ne static pressure PO
drops with increasing altitude. The vertical distribution of p0 is *iven by the fundamen-
tal equation of static meteorology

I - (51)

Ypo dz a

where g is the gravity acceleration, e the wavelength and y the r3tio of the specific heats.
Equation (51) states that at every local altitude the static pressure of the atmosphere
corresponds to the weight of the air above this altitude. The vertical density distribution,

due to the isotherial stratification, is given by the vertical static pressure distribution

(51). The stratification parameter

aisotherm a
2  (52)

is, except for infrasound, a quantity of a small value, i.e., wavelength divided by 8 km.
The analytical solution for the wave propagation an isothermal atmospehre has been given
by Schrddlnger (1917) [481. It follows from his theory that the kinetic and potential
energy associated with a plane sound wave remain constant separately while travelling up-
ward or downward. That means that the amplitude of the particle velocity q due to the sound
wave, see also equation (47), must change with the *nve-)e square root of the density

'K/



q -q (53)
P(z)3

where po it the density at the altitude vnere the sound wave Is given and O(z) the density
at that altitude where the sound wave is observed. However, the sound pressure (47) changes
with the square root of the density

/Tii F (54)
p 00

The sound intensity remains unchanged compared to that one In a homogeneous aomosphere,

since the density cancels in the product of (53) and (54) :

J - q.p' - -. ' (55)

This i also in accordance with the fact that in an isothermal atmosphere the eometry of

the wavefronts and rays is the same as in a homogeneous atmosphere. The result (55) there-
fore would also follow from the conservation law of the acoustic energy in a ray tube.
Schr~dinger (48]also taught us that there are additional terms due to gravity in the par-
ticle velocity (see figure 14). The air particle is then circling on an elliptic path.
The ratio of the small axis divided by th large axis is of magnitude of a, so that except
for infrasound, this effect can be neglected. From figure 14 the relationship between infra-
sound waves and gravity waves can be seen. it has already been stated by Schrudinger 1481
that dispersion must occur. However, the main effects of isothermal stati on sound
wave propagation in the usual frequency range is describp' by the factor \{z)j/0o which
can he replaced by the square root of the static pressure ratio

0 z z(56)

which is more common in literature.A lot of papers on the sonic boom 149], 1501, [511 are
dealing with an isothermal atmosphere. Due to the constant temperature the characteristic
method itself remains uncnanged. The increasing static pressure and density while approa-
ching to the ground result in a finite asymptotic distance between a leadinj and a trailing
shock of a finite body, see also 1521, whereas in a homogeneous atmosphere there is no
finite asymptotic value for this distance. Furthermore, shock waves in an isothermal at-
mosphere are damped with an error function, see also 151). Because of convenience, the
isothermal atmospehre is often used to make preliminary studies of the gravity stratifi-
cation effects on sound and shock wave propagation.

3.3 Polytropic atmosphere

In a polytropic atmosphere the fundamental law of static meteoro')gy (51) still applies.
Due to vertical transport of heat during some periods of instability the vertical distri-
bution of temperature ir a real atmsophere in general is somewhere between the 'indifferent
stratified isentropic and the stably stratified isothermal atmosphere. The polytropic at-
mosphere can be well approximated by a constant decay of sound velocity with altitude,
compare chapter 2.4.3.

With a, and pp as sound velocity and static pressure at source altitude, a transformation
similar tb equation (56) is made :

1/2 'l/2
q r dp j ) P r e d ( 5 7 )

a la Po) ap Po [a pol Pp

and a reduced particle velocity qred and a reduced sound pressure Pred will be obtained.
With (57), the sound intensity is given by

q-p' = qred.'red (58)

which means that the acoustic intensity iS invariant to the transformation (57).
The system of differential equations s in formal accordance with the corresponding system
for the isothermal atmeophere solved by Schrbdinger, see also [481 and [51). The complete
solutiOD for 4red and Pred can be taken from [53]. There a velocity potential is introduced
given oy

f(t - Jas ds)

a

where R is the instantaneous radius of curvature of the wavefront and s is the distance
measured along he ray from the origin of the source.
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The quadrature TaT ds represents a distorted ray, so that same units of distance cor-

respond to same units of time. Furthermore, the distortioi, allows the choice of two sets
of bicharacteristics which are perpendicular to each other, see [53). For the pdrticular
atmosphere with a constant decay of sound velocity with altitude, see chapter 2.4.3, the
radius of curvature of the wavefront and the distorted dirtance along the ray can be
given explicitly

R -(x 2sy2+Z2) +R I- A2(x 2 + 22)1 (60)

and

P ds ! ar sinhIARI (61)
0 a(s) A

where

A I- da (62)
ap dz

is given by the rate of decay of a with altitude. Te geometry of R and s also can be seen
from figure 3. Of course, the correct formula for the acoustic intentisy (58) can be derived
using the analytical solution given in [531. In order to show the deviation of the acous-
tic intensity from its value in a homogeneous atmosphere, a thumb rule is found by compa-
rison of equation (59) with equation (58) :

a 2  1polytropic = homogeneous "k . h (63)a
2  

homogeneous

where Tp is the absolute temperature at source altitude and To tie absolute temperature
at the observer's altitude. In figure 15 the sound pressure radieted by an acoustir mono-
pole is shown. At 'heorigin, it radiates the same acoustic pressure into all directions,
the local sound pressure is modified only by the ratio of the sound velocities ao/ao and
the local acoustic intensity by the ratio of the absolute temperatures TV/To. This means
that only the acoustic intensity from very high acoustic monopoles is affected by the
vertical temperature distribution, when To/T o reaches a maximum value of 0.75. For low
acoustic monopoles there is almost no influence of temperature distribution on the acous-
tic intensity, since the temperature changes at most by ten degrees celcius only. The
above statement does no longer hold for nighier order acoustical sources such as acoistical
dipoles, figure 16, and acoustical quadrupoles, figure 17. In these cases, there are two
or four directions of zero intensity. These directions of zero intensity, of course, fol-
low th ray and therefore are reflected upward or downward as a function of the tempera-
ture gradients. This may be important for high directivity noise scurces such as jet noise.
In this connection it might be worthwhile noting that near airports in months with differ-
ent major weather conditions, there ar: different average noise evels taken from the same
microphone positioned under the flight path.

The stratification factor for - polytropic atmosphere contains in addition to the gra-
vitational term, given in equation (52), a contribution from the sound velocity gradient,
see also [531 :

apolytropic ' 2-y + z da (64)
a-a p 2 2ap dz

Aga i the air particles circle during the passage of a sounJ wave on an eliptic path;
sue figure 14. The magnitude of the small axis is then given by tha one of tne large axis
multiplied with apolytropic" Except for infrasound, apolytropic is ver', small. One more
time the relationship to gravity waves is seen. Equation (64) is a'so consistent with
Bergmann's statement [54] that there is also dispersion in the absence of gravity due to
density gradients.

3.4 Atmospheric wind boundary layer

Due to the combined action of meteorologic pressure gradient, ground ftiction and
Coriolis force, there is a wind force gradient and a wind direction change in the atmos-
pheric wind boundary layer, see figure 7. A sound wave cannot have much effect on the
wind boundary layer, since a sound pressure level of 100 dB causes a particle velocity of
0.5 cm/s only, whereas the wind velocity (M(uE, %'E,O)) is often greater than 50 cm/s. Thus,
the velocity distribution in the combined wind and incident sound field is approx;iately
the same as that in the wind boundary layer without the sound field. The first order equa-
tions therefore are obtained by subtracting the equations for the wind field from the ones
for the combined wind and sound field. One then obtains for the conservation of mass

,' . ,,- - -



d + aqx + aq + ia 0 (65)
dt ypo ax 3Y az

and momentum

d qu E

dt 3x Ypo z

d qv = -
a 2  

V P . q z -E (66)

dt aY YPo 3z

.d qz = " a2 a P'

dt ay Ypo

where uE and vE are the wind components in the x- and y-directions and

d . + + yE ) (67)

is a substantial derivation indicating that the sound is carried along with the wind.
For uE and VE any vertical distribution of wind can be taken.

To illustrate the effects of wind gradient, a plane sound wave (qy 0) with the front
inclined moving into a boundary layer with constant wind direction (yE 0) is studied
first, see figure 18. The coordinate system is moving with the uniform wind above the
boundary layer. For this particular case the solution of (65) and (66) is given by

Po " ( + u, ) F
Ypo a t T

Cx 
= 
a - + - NzF (68)

q y = d 
a F- -

with

F = 1 f(t- sdr (69)
NT J aph(F)

0

and Nz and Nx as direction cosines of the wavefront in the boundary layer

2 2
Nx + Nz =1 (70)

and Nxo and Nzo as direction cosines of the wavefront outside of the boundary layer

2 2
Nxo + N = 1 (71)

With

Nxo = sina o  and Nx = sine (72)

Emden's [17) refaction law of the wavefront normal can be written as

1 = 1 E (73)

sino sino0  a

The wavefront also can be regarded as a Mach wave of a plane profile at supersonic
speed. Yhe direction cosines (71) are then related to the Mach number Mo of that profile

iNXo 
=  

sinuo 
=  
-174
Mo  (74)

From Emden's [17) refraction law (73) it can be found with

Nx  (75)

/
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that
U 
L

M Mo - - (76)
a

H is a local effective Mach number determined by the relative vclocity of the profile rela-
tive to the moving particle in the boundary layer. The argument of the retarded function
in (69) represents a phase. Therefore, in the quadrature along the path of the wavefront
normal n, compare chapter 2.3, the phase velocity aph and not the ray velocity is required.
The quadrature also can be rewritten in terms of the Vach number o- the direction cosines

di0 d 17 M(") diT (77)

aph (5) aI Nx(iil a I Mo

a 0 0

Thus the character of the plane sound wave, see figure 18, depends on the local effective
Mach number given by (75). This phenoilenon has been used by Makino (1974) [551 to describe
the effect of steady wind on tne sonic botm.

Due to the interaction of the particle velocity due to the sound with tie wind gradient
an additional velocity in the x-direction occurs, see equation (68). This additional velo-
city obviously belongs to the sound field, since it is propagated with the sound, see
diso [561 and (57).

In the general case, when the wind direction changes with altitude (vE f 0), Emden's
law [17] reads

2 2

1 V E 4uE+vE Cos( (78)
sIn(% sina0  a

where i is the angle between wind vector and horizontal component of the wavefront normal.
The wind is supposed to be a function of altitude only. The solution of (65,, (66) and
(67) under the condition (78) reaJs for a planar wave, ;ee a~so [571 :

P- - I (L , uE  + v -) r (79)
YPo a dt y

u a F + uE N r
x z

uy a F + v, 80)
By @z

Uy a a --- 80

uz

with
N .o 1 12 n -

I-- - 2 f(t- 
( 1

0 a
pn

and

a ph = a + Nx uE + Ny v E  (82)

Emden [17] showed For this case that the path of the wavefront normal is a curve of single
curvature. Therefore, the argument of the retarded potential (81) can be hardled much
easier than the ray required for the rey tube area method, because the ray is a curve
of double curvature.

3.5 Infrasound waves

Internal gravity waves and infrasound waves have been dealt with in the literature since
a long time. Early work by Rayleigh (1890) [581, Lamb (1908, 1910) (59, 601, G.J. Taylor
(1929, 1936) (61, 621 and Pekeris (1938, 1939) [63, 64) was concerned with waves from the
Krakatoa eruption, see also Symond (1888) [651, and from the great Siberian meteorite,
see also Whipple (1930)(661. Recent studies are on the interpretation of nuclear explosion
waves, see llarkrider (1964) (67] and Pierce, Moo and Posey (1973) [681. Other papers are
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concerned with infrasound waves generated in the troposphere during severe weather [69]
or during the passage of Concorde supersonic transport [70] or during deceleration of big
ocean waves on beaches. A bibliography (71] published in 1971 lists over 600 titles. All
these papers deal with wavelengths shorter than the Brvnt-V~is~lN wavelength, see also
V~isSl (1925) [72] and Brunt (1927) [73]. On the other hand, studies on internal gravity
waves, who-.e time period is longer than the Brunt-VNisSlI period exclude compressibility
effects, see also [74] and [75]. However, there are coupled gravity and infrasound waves
as described by Keck (1977) (761. Keck investigated one dimensional wave propagation in
a compressible stratified fluid including a gravity field, see figure 19. He derived a
wave equation for the vertical component of the particle velocity due to a wave travelling
horizontally :

a
2  

a
2
qz  a

2
q2

+ ~qz - a
2 

a (f1 + N2qz) = 0 (83)
at

2 at2  ax
2 

at
2

where

N d V ZI ) (84)

is the Brunt-VMisNl frequency of an incompressible fluid and

N = N2 (85)
a
2

that one of a compressible fluid. For vanishing gravity (g - 0) equation (83) reduces to

----qz - a z = 0 ,(86)
at

2  
ax

2

the well known sound wave equation and for an incompressible fluid (a N , N N1 to the
gravity wave equation

a2q
-. Z + N2qz = 0 ,(87)
at

2  Z

that is for the case when the buoyancy forces as like as a force of a spring, try to put
the particle back into its original position. For a harmonic dependence o. qz

q, 
= 

q0 expji(At-kx)j (88)

Keck [76] obtained the following relation between angular frequency " and wave number k
from (83)

k 2 Ll(89)
a
2 2.N

2

A series expansion for large wave numbers (N
2
/ a

2
k
2 

- 1) clearly shows two types of waves
2 2 N N

2

! a
2
k
2  
+ N2 _ 2 (I - N + + N + ...1 (90)

a
2
k
2  a

2
k
2

where after Keck [761 w, can be understood as the angular frequency of a sound wave modi-
fied by gravity effects and the angular frequency W2, given by

N[(12 = N --- +... - + + (91)
a
2
k
2  

a
2
k
2

as an angular frequency of a gravity wave modified by compressibility effects. The two
waves are also shown in the dispersion diagram, figure 20, taken from [76], where .

2 
is

plotted as a function of k
2
. The slope

aW2 
W a w

k
2  

k &K

is the product of phase velocity given by equation (10) and groupe velocity agr = as

given by equation (7). The dispersion diagram is for a stably stratified atmosphere. For
the modified sound wave, the frequency is above the Brunt-VMisNl frequency (.2 > N

2
).

These waves asymptotically approach the line .2 = k
2
a
2 

+ g
2
/a

2
. For the gravity wave

I modified by compressibility effects the highest possible frequency is, obviously, the
Brunt-Vis 1 frequency N for a compressible fluid. A generalization of the analytical
solution given in chapter 3.3 to encompass the modified sound wave as given by Keck
seems to be possible.

.;. ' ', '
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MATHEMATICAL TECHNIQUES FOR ACOUSTIC PROPAGATION PROBLEMS

P.E. Doak, Institute of Sound and Vibration Research, The University, Southampton S09 5IH, England L .

The principal mathematical techniques for solution of both steady state and transient acoustic
propagatioh and boundary value problems, for both forced and free motion, are reviewed. These
include separation of variables methods and the associated techniques for the resulting ordinary
differential equations, Green function methods, Fourier, Laplace and other transform methods,
finite element and other numerical methods, and certain special techniques including Wiener-Hopf.
Emphasis is placed on the relative merits of the various methods for speci fic types of problems.

L. INTRODUCTION

In its relatively simple "acoustic analogy" form, the equation governing the thermodynamic pressure
p fluctuations p' (xk,t) in a time stationary but otherwise arbitrary tlow of a homogeneous fluid, can be

written as

Z - - (. s + 2 as- (+viv j -f 2)', Cl)
2 t at at i tt ;x a x I

where P(xk,t) is the thermodynamic pressure, 1/c
2 - p - (2/9p) , p being the mass density and S the

entropy per unit mass (similar subscript notation is &sed for other thermodynamic derivatives) , f is the
external force per unit mass (only the electromagnetic Lorentz force and/or a gravitational force are
physically possible), vi is the particle velocity and S is the "viscous" stress tensor: i.e., the total
internal stress tensor p1. is given by pi - p - Si where 6 is the Kronecker delta, 6ii - 0, i
and 6 - I, i - J. Caresian vector ana tensol notation is use, i,j,... - 1,2,3, with the usual con-
ventioA that summation is indicated by a repeated index. A prime indicates the purely fluctuating part of
a quantity and an overbar the time averaged, mean, part. By the time stationary hypothesis, any function
f f(k,t) can be written as f(xk,t) - f(xk) + f' (xk,t), with f' having zero time average over an appropriate
interval (a period, if the motion is periodic, or a suitably long time if it is random). Equation (1) is
an inhomogeneous scalar wave equation with a wave speed, c(xkt), which in general may be variable in both
space and time. Analytical solution methods are readily available if c

2 
is a constant, c0

2
. In a

physical case, co
2 
vould naturally be selected as an average of cZ over an appropriate space-time region.

With variable tccms in c
2 

thus transferred to the right side equation (1) becomes of the form

2 
P/axi

2  
(1/c0

2
)a 
2
p/t

2  
q(xkt)o (2)

where -q(xk,t), the source term of this inhomogeneous scalar wave equation with a constant wave speed CO,
represents all the terms on the right side of equation (1) plus aI{(l/c

2
)-(1/c 

2
))(ap/at) Iat. For

simplicity, the primes indicating that the fluctuating part of p is being sough are omitted in equation
(2), which in any case is formally correct even without them.

2. FORMAL GREEN FUNCTION SOLTrIONS

A formal solution of equation (2), appropriate for any fluid filled space V with any boundary surface
S, and satisfying the condition of space-time causality (i.e., that the cause precedes the effect), can be
obtained by using the f".:e space Green function (the "point-impulse" response) G (xkpt;yk,T), which is the
particular solution of equation (2), satisfying radiation conditions, when q(xk,t) - 6 (xk-Yk)6(t-T), where

( -6(x 1 -y,)6(x 2-y 2 )6(x 3-y3), 6( ) being the Dirac delta function, and x.,t and ykj being observer
and source spa'e eime co-ordinate., respectively. This Green function is theximpulsive primitive spherical
wave G - 6(T-(t-r/c 0 ))/41r, where r = ykl is the source to observer distance. The problem can always
be formulated on the hypothesis that q, pl and all its derivatives are zero up to, say, time t - 0, so that
the complementary functon for equation (2) is zero, and the forced particular integral solution due to q is
then

q(Yk t -r/c 0) 1 n 1o (n,r} (I r 2 (

P(xk't) 4k + - [ (Yk' T) + r dS(yk)" (3)
Lc *t-r/c0

Here n is the normal to S outward from V, and cos(n,r) is the cosine of the angle between n and r. The
volume integral in equation (3) represents the superposition of the primitive spherical waves propagating
out from each point in the source distribution q(yk,t1, each contribution arriving at an observation point
a time r/c0 after it was emitted. The surface integral represents the effects of scattering of thene
original waves at the boundary S, and/or, since S could be simply any "fictitious" geometric surface drawn
arbitrarily in the fluid, the effects of any sources outside V. The first term in the surface integral
shows that the pressure gradient on S acts like a surface sour=e layer. The second term, which is

IfP(Yk,-0 d ,

shows that the pressure on S acts like a dipole surface layer, or, what is the same thing, a distribution of
normal force per unit aiea on the fluid at the surface.

In addition to G., the Green function can includs an arbitrary complementary function, G - G + G , and
.'" " this in principle can be selected so that the Green function satisfies an 'Impedance" boundary condition of

the form AG + 3G/3n - 0 on the surface S, the quantity A being specified on the surface. This form obviously . -,
includes the homogeneous boundary condition cases of G -0 or 2G/an -0 on S. The general Green function .
L)'pression for p(xk,t) can be written as

- %
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p(xk,t) - f I q(yk,-)G dykdT + I I (G " p ' dSdT. (4)
VT ST a

Evidently, if p satisfies an impedance boundary condition then if G is selected so that G satisfies the
same condition the surface integral in equation (4) will vcnish. fn physical terms this means that the
complementary function part of 3 represents the "scattering" from the actual impedance surface S of the
incident impulse G. It is possible in many situations to construct appropriate Green functions, either
exactly or approximately, by using the method of images, or expansions in suitable base functions, or
otherwise. Also, the choice aG/3n - 0 on S is often useful, corresponding to total in-phase reflection
of the incident waves. On a rigid boundary of a fluid, of cour&e, Dp/3n - ZS _ /n, and insofar as the
fluct"Ating viscous normal stresses are relatively negligible, this choice can Yead to effective vanishing
of the surfoce Integral. As equation (4) for p(x.,t) is independnnt of the choice of boundary condition
for G, the volume integral in it always contains tHe "free field" cuntribttion (i.e., the volume integral
term of equation (3)) but the Gc contributions to the volume and surface integrals are interchangeable, as
it were, being transferred from one to the other by the boundary condition choice.

if S is a surface in the fluid coinciding with a wavefront, then the surface integral in equation (3),
or equation (4), is the complete formal expression of Huyghens' Principle.

3. SEPARATION OF VARIAB!,ES

Image constructions for G are possible in certain problems involving plane boundaries. When the
boundariez are not plane, recourse must be had to the method of separation of variables, or other methods.
Fourier (or Laplace) transformation on time provides separation for time:

p(xk,w) - -f p(xk,t)e'iutdt, p(xk,t) - f P(xk,w)e"td. (5)

With again a quiescent unforced system for t < 0, application of the Fourier transform to ecuation (2) gives

a2p(xk,w)/tx
2 
+ K

2 
P(xk,w) q(xk,w), (6)

2 2 2
where k - w /0 . Equation (6) is the scalar Helmholtz equation, and it is separable in eleven orthoaonal
curvilinear co-ordinate systems: rectangular Cartesian, circular, elliptic and parabolic cylinder, spherical,
conical, parabolic, prolate and oblate spheroidal, clihpsoidel, and paraboloidal. It is also separable in
a few non-orthogonal systems (e.g., triangular). Thus, in these co-ordinate systems, series solutions of
the homogeneous form of equation (6) can be found:

(1) (1) (2) (2)
p(xk',) Z (c F n(.i;ki) + C . Fin(n;k n ), i - 1,2,3,

imn ia t

where the are the three co-ordinates, the C. 's are constants, the k 's are the associaced wave-
numbers, k

2
_ + k 2  

+ k
2

- k 2 whose re aTIve proportions are deteo ned by boundary conditions,
including @ ose at Minityf any, and the superscripts correspond to the two linearly independent
solutions of the second order ordinary differential equations produced by the soparation process. The
total wavenumbor eigenvalues, k 2 , may be selected equal to k", or not, accord-ig to the type of problem.
This selection is possible, and esirable, according to circumstance, because f;,r the orthogonal co-ordinate
systems suitable combJnations of the F_£ 's can be constr,:cted to form a complete orthonormal set of babe
functions over an interval along a co-ornate curve, or on a co-ordinate surface, & - constant, or over
a volume bounded by co-ordinate surfaces. The case of rectangular Cartesian co-crdinates is the simplest
for illustration, and is representative of the general case. Here, for the co-ordinate surfaces x1 1 0,a,

" O,b, x3  Od, the (un-normalized) base functions are, for curve intervsi, surface and volume cases,
cos Ltx costx cos (a s (rx) cos .m cos (nz),
sin -- sin a si, b 

)  
in (T sin b sin d

with the corresponding k, a as Z_. "la/a, %k., k 2 ) (7t/a, m/b) and k 2 
- (ia/a)

2
* + (m/b)

2
,

(ki,,k2 ,k ) - (s/a,mA',n/d) an k (La/ar + (ms/b)2 (nw/d) 2
. Evidently when such sets of base

fuctions are constructed, the wavonumor eigenvdhues are geometrically determined, quite indeponuently of
the fluid's sound speed or density, and of any applied forcing frequencies.

By means of such sets of base functions, series expressions for any functions defined in the volume,
or on its surfaces or edges, can be found. By virtue of the orthonormality of the base functions,
jr mn( i) for the volume case, for example,

(0, mn X Av,

$ Z. A -v
d v  

, ( (8)
V (1, Xin Av,

and hence fo, any function f(&i),

f( a 1n 'ton' amn = f 
f "t. dV, (9)

Inn V

and similarly for the surface and co-ordinate curve -a-.es. By use of such expansions matching of boundary
conditions on co-ordinate surfaces can ze readily accomplished, and also the particular solution of the
inhomogeneous equation (6) can be obtained.

The case of a sphere in j fluid (p,c) of infinite~extent, the sphere having a small amplitude normal
velocity vr(a,O,0)e on its surface r - a, provides an illustration of boundary conditioi; matching.

In spherical polar co-ordinates (r,O,6) with origin at the sphere's centre, the normalized (i.e., on a
sphere of unit radius) surface base function. are the spherical harmonics Sm(8,0) - N Pm(cose)e , pm
being tLe associated Legendre functions and N. the normalization constants. The ra?al functions n

satisf,r  outgoing wave radiation conditions at infinity are the spherical Hankel functions of the second
kind, h. (kr). Thus the preLsure for r > a c%n bo written as I -.--

S . - .dn,



p(re0,)e'wt eiwt p 
Sm (0O) h 

2
(kr), (10)

mn n3

with the constants p remaining to be determined by application of the boundary conditions at r - a. For
small amplitudes, p3V /3t + 3p/3r - 0 so that at r - a one must have (1/ikp Oc0 )3p/3r + vr(aO,*) - 0.
Expansion of v (a,8,4f in the spherical harmonics gives12rm

Vr(a,8) - vmn S vmn - I f v,.(a,O,)Snm Sm* sin~dSdo.
mnn

The boundary condition therefore is

e Z {(1/ipOc^)h (21(ka)pmn + vmnS) (0 I - 0,(11)
mn

where the prime indicates differentiation with respect to the argument. Since the Sm's are orthogonal,
equation (11) can be satisfied only if the~coefficient of each Sm vanishes. Hence tie coefficients P,
are determined:

Pmn n Pc0h 2 1 
' (ka)vmn. (12)

00)n
The quantity P0c 0ih 2  -  

(ka) is evidently the "mn-modal" impedance at the radiating surface r - a.tn
An illustration of how particular solutions can be similarly obtained is provided by the case of

scattering of an incident plane wave by a rigid sphere, again of radius r - a. Suppose first that a point
simple harmonic pressure source of unit strength is located at z - h(> a) on the polar axis of the (r,em)
co-ordinate system with origin at !he centre of the sphere. The pressure from this source then can be
expressed as eiwt'ikR/ 4sR, R - .x + yZ + (z - h) , in wt-ich, of course, x - rsinecoso, y = rsinesin and
z - rcosS. This potential is the particular solution of the inhomogeneous equation

(32/axi
2 + k2)p6  - 6(X)6(y)6(z - h)eit (13)

and is thus a free space Green functio- :or simple harmonic motion. The small amplitude boundary conditions
oF zero pressure gradient on the rigid sphere r - a evidently can be satisfied if the source term, or, y a
is the same thing, the pressure field from it, can be expressed in terms of the wave functions Sm(O,#)h ' (kr)
appropriate to the co-ordinates with origin at the sphere's centre. Such expansions of base functions in
one co-ordinate system in terms of those of another are obviously possible in any region in which the domains
of the base functions overlap (since both jets are complete and orthonormal). Th'.y are sometimes called
"addition formulas". In the case of e

"
M /41R, with the point R = 0 being on the polar axis at z - h, the

expansion is
Jn(kr)h 2) (kh),

WiR i. h62 MRi) ik ; nn(4
e'7n-0 + h(2) 2n(kh)h( 2

) kr), r > h

Here Pn are the Legendre polynomials and Jn the spherical Bessel functions. By proceeding to the limit
h -, one obtains

Pi . ikrcosO . n (-i) n(2n + l)P n(cosO)jn (kr), (15)
n-C0

a representation for the incident plane wave in the negat~ve z-direction. with the incident pressure wave,

p thus represented in terms of the appropriate base functions, the boundary condition that the total normal
pressure gradient be zero at r - a can easily De applied &s before. The scattered field can conveniently
be represented as

ps(r,e,*)eiwt ei
n

t r Psn(-i)-n( 2 n + l)Pn(coselh(2) (kr), (16)

satisfying radiation conditions. The boundary condition then is
(ap1 i + 2 -n (2).
.3r - - 0 E E (-i) (2n + l)Pn(cosO) (kin' (ka) + psnkh 2 (ka)),

r-a n-0 n

which gives, by equating each coefficient to zero as before,

P n " ~ J n 
' ( k a ) / 

!- 
( 2 ) ' ( k a ) "

The case of a hard-walled rectangular room containing a si.)le harmonic point source provides an
interior problem example. With the e

t 
factor omitted, and the point source at Yi' the pressure satisfies

(3
2
/ax1

2 
+ k

2
)p(xi) - -6(xi - yi) (17)

in the room (0 < x <a,0<x < b, 0 x3  d), and ap/an - 0 on the walls. The normalized (over the
room volume) base lunctions sa?isfying these boundary conditions are

| imn(xi) - (1/abd) (2 - 6O, )(2 - 60m)( 2 - 6On)cos(tsxI/a)cos(mzx 2/b)cos(nllx 3/d).

The formal expansion of the delta function in these base functions is

6 ( x i - y 1 
i  

. Z m n x i ) * Im n ( Y i )

* -~ and similarly the pressure can be written as

P(xi) - L Pimnttmn(xi),

I . . -. . .,. .Z
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vith the Pt- °s 
to be determined by substituting both of these expansions into equation (17). This gives,

again term term,
-Ck' - k.2n)PLn + *t ,(yi))O ,n(xi) - 0,

whence p - M.. k 2 - k2 ). Tha coefficients p thus turn out to be infinite when k is equal to

one of t;Awavener eigenvalues k.n . /((L/a) 2 + + (n./d) 2). This is only to be expected as the
fluid in the room has been assumed ossless and there are no losses at the walls. If, realistically,
viscous, thermal and relaxation los les in tt e fluid are taken into account k will be a complex function of
frequency, which, in itself, of cou.se, is sufficient to remove the singularity. Small losses at the walls
similarly can be taken into account;, they will provide imaginary parts to the kImn's, without affecting
the base functions to a first approximation.

With the wavenumber eigenvalues k , one can associate frequency eigenvalues, w - c k£  These
are the normal frequencies of free vration of the fluid in the room and the functioIR 0, 0 aK the normal
modes of vibration. A general free vibration of the fluid in the room is thu- represente~sby

.p(xi) - E PL fnP(xi)e ,

imn

where the constants P1mn are determined from initial conditions.

By the same procedures as in these three examples, fLrmal caries solutions for radiation, scattering
and interior problems can be obtained in any of the eleven orthogonai curvilinear co-ordinate systems in
which the scalar Helmho z equation is separable, the differences from one system to another being only in
the specific functions used.

Obtaining numerical results from such formal solutions is dependent on the rapidity of convergence and
on the availability of appropriate asymptotic or other approximate representations of the functions, or of
efficient computer programi for calculating them. The limitations here are very r3al in practice; except
when asymptotic formulas can be used to greatly simplify the series the labour of calculation is almost
invariably orders of magnitude greater than that of obtaining the formal solution. In many boundary value
problems where numerical values are required, it is often simpler to return to the Green function solution,
equation (3), and either integrate it directly or treat it by integral equation methods - it can be regarded,
of course, as an integral eqvtion. Such approaches are of relatively new general usa, their increase in
popularity coinciding with the increased interest in obtaining numerical results in specific cases with tl'e
aid of computers.

There are two general analytical properties of solutions of the homogeneous scalar wave equation and
homogeneous scalar Helmholtz equation, respectively, that are of particular interest, in connection with any
solutions, analytic or numerical. The first is chat, in consequence of energy conservation, the mean
intensity vector J, - p'v1 ' is solenoidal, 3/3xi - 0. The mean energy flow contours therefore are
relatively simple,* and reasonable estimates of-thel can sometimes be made in the absence of full info= t.i.on
on the vaLues of p' and v '. The second property, relevant only to the scalar Helmholtz equation, is that
for both the real part and the imaginary part of p(x ,w) separately, the average value over any sphere of
one-half wavnlenqth radius " zero. (This result c~mes from the analoq for the scalar Helmholtz eqeation
of the well known mean value theorem for Laplace's equation.) Consequently, whatever the particula. boundary
conditions or source distribution, both the real and imaginary parts of p(x ,w) must be oscilatory functions
of space with an "average" distance between nodal surfaces of one-half wavelength. Evidently this property,
like the energy conservation one, is available for use as a "control" on any assumed solutions.

4. MULTIPOLE EXPANSICtS

The relative ease with which exact formal solutionu for the general inhomogeneous scalar wave equation
can be obtained is in strong contrast with the subsequent difficulties one can have in numerical evaluation
ol the solutions. These difficulties are inevitable in the general case, because of two inherent properties
of the wave motion itself. The firs, of these properties is that the motion propagates and the second is
that superposition results in interference. Contributions to the motion at any point in space from
different regions of a source distribution interfee with one another, and with the waves from the same
origins which have been scattered fiom the obstacles in the tluid. The range of characteristic impedances,
Pc, of common materials is very large: for example, the Pc of air is of the order of 10- 3 

to 10- 5 
thope of

water and the many other liquids and solids of comparable densities and copressibilities, but porous fibrons
or granular materials can have characteristic impedances of magnitudes comparable to that of air.
Scattering, therefore, can very from being very strong to very weak, and in gene.el can result in changes in
wave form. As the Green function formula (3) shows, to calculate the pressure at any point at any time t,
if the source began emitting at t - 0, one has to know whet the field was on all scatterers withir, a radius
c0t of the source distribution at the respectively appropriate earlier times. Fir the steady state case,
one has to know the field everywhere on all scattering aurfaces, for all time, as it were, In general,
then, calculations for only localized spae-time regions are not possible.

Even if scatterers are not present, calculation of the volume integral in the Green function formul. (3)
is rendered difficult by interference. Variation of the source function q with position and time means
that there will be interference at an observation point between contributions frow different arts of the
source region even if they are equidistant from the observation point. Second, even if difrerent parts of
the source region are emitting the same l.-als at the same times, their contributions at the observation
point can interfere because of different tavel times. The multipole expansion technique permits separate
assessment of these two kinds of interference, dt.a to source non-uniformity and source mize, zespactively.

Formal expansion of the integrand of the volume integral of the Green function formula (3) in a trip*e
Maclaurin's series in y but with only r - jxk-ykl regarded as varying (i.e., q(y kt-r/c) is formally
regarded as varying wit§ y. only through the retarded time, t-r/c ) , followed by use of te fact thaty

. / . ...-. . . . " ' " F' .. . , .. -.
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ar/y,. - -ar/x k and term by term Anegration, leadb to the reCult

r(xkt) - I D±n(ll. a-) MH n(t - I /cg), (18)tmn ax

where the D.. are the multipole operators, defined by

. )L+m+n - 19)

t amn . a 2 3 7M3n 7
1xk.

end the MIm n are the overall instantaneous multipole moments of the source clstribution, defined by

m(t) - Iyl Y2 Y3 q(Yk'd (20)
mn n dy 2dy3.)

Th, moment 0 is called the (scalar) monopole moment, MH with i+m+n - I the (vector) dipol moment,
Mil  with 1 n - 2 the (tensor) quadrupole moment, etc. 4hen the uonolole moment is zero, the fie.d
rakiated by an equivalent dipole source strength density mi , such that q(y'kt -am i(xkt)/xi, is the same
as that radiited by the actual source distribution: -e.,

m(yk.t - r/c0 )pf.~t --- I - dyldy2dy3. (21)P(Xk't) TXL i 'T ,;d2 r

Sinila'ly, if both monopole and dpola moments are zero, then, with q(xN,t) - -a
2
mij (xk, t)ax ax . mi

being the equivalent quadrupole source strength density,

a2  f _J(yk,1 - r/c0)p(x.at) - i a 4axr dyldy2dy3  (22)

and so on. Note that unless the source distribution is bounded in space difficult es of convergence of
the original Greei function formula integral and the subsequent multipole moment integrals may arise.

In the radiation field, far from the source dstribution, with terms of or'sr higher than the first
in l/Ixk neglectej in the multipole contributions DPrnn Mkmn , the pressure becomes

Psad( xk~t) - Z M'xjc t~ H( IxNj/co). (2mn-04n

Equat'on (23) is a fourfold inverse Fourier transform,

Pr~iXj~ 4.rjx I .UI q(yk'w)exP(i(wt~k~xjl + k FxyYi))dw dy1 dY2 dy3, 24

where q(y ,w) is the Fourier transform (tixe to frequency) of the source distribution function q(y,t).
The distrlbution of the far field pressure in ar,Ile and time, 4wiX Pr d(NCt), is thus ii a unique, one-
to-one relationship with the source distribution q(y ,w), by the u.(iquenesl property of 5,\urier transform
pairs. The paired transform variables ard (t,w) and (.cyi), uhere K is the wavenumber vector kx /Ix
By performance of the paired inverse fourfold Fourier transform on 4r1i lp d(x ,t) the source distisbualonq(y ,t) is recovered. In this sense a given (complete) far f.Veld has I c:ique source distribuion, in

bot space and time, and vice versa. Since scattering surfaces, accordin; to the Green function fotmula
(3) , are equivalent to certain -surface (monopole encl dipole. source dis~rlbutions, it follors that the same
one-to-one relationship exists between the far fi.ald and a distribution 'f sources and scitterers (in a

bounded volume). This property is the ab initio babis af acoustic holograihy, and of so,,rce identification
and locatioa procedures.

As a representative illustration of the multipole expansion technique , equation (24' can be used to
obtain, very easily, the p.ossure radiation field of a single frequency uniform source Uistribution, of
equivalent multipole mo.aent frsqaency spectral density m (M), the distribution being confined to a volume
in the form of a rectangitlar parallelepiped of edge lengths 2., 2b and 2d, respectively, in the x, x2 and
x3 directions. With the origin at the centre of the parallelepiped, the result can be written as

Sx I l x2  m x nl.xjlpad(xjt) . abd mzmn)exp(iw,,t-lx I/co) ) (- ik T )-i )x

sOn(kaxI/Ix 1) sin(kbx2/; I ) sin(kdx3/Ix I)
x kax I/ ixj i )  ( tx 2 / ix /) (k x / x .

The three factors of (din&)/4 form are independent of the multipo]e ordev and thus represent the effect of
path length interference. Similarly, the effect of rource non-uniformtty intrference (here phase
variation across the source distribution) is repr,sent.d solely by ihu three (-ikx1/Ix I)... fautors.
Radiation fields for other source distibitions can be dimilarly obtained and all show comparable separ. te
factors for the nterference effects of source distribution non-un formity and source size, respectively.

5. TkANSFORN. ;XD INTEGRAL EQUATION H£THODS

Since the inhomogeneous scalar wave equation i linear, It is suitable for analysis by intogrsl trans-
for- methods. The fourfold Fourier wavenumbet-zi-quency transform pair,

~/
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P( c 
'

) 'i plx ,tte AiXdx 2dx3dt,

- iCjx+iat
p(xit) - 11ff p(K.,W)e d ~ I&2 d3do,

is perhaps most.commonly used, particularly in situations where space and/or time "correlation-type" data
processing or analysis is to be employed, because of the wall known Fourier pair relationships between
certain correlation functions and rower spectral densities, use of which readily provides formulas for
overall power output.

Mathematically, with iw interpreted as a complex variable (often called s or p), Fourier transformation
on w is equivalent to Laplace transformation on s. Other transforms are occasionally useful, such as those
of Mellin and Hilbert.

Tne principal useful property of integral transforms is that real variable differential equations -
including both the wave equation and boundary conditions - can be transformed into complex variable algebraic
equations, from which eigenvalues or other key parameters such as scattering coefficients can more easily be
deduced. Advantage then can often be taken of contour integration techniques in evaluating the inversion
integrals to recover the real solution.

Other complex variable methods, such as Wiener-Hopf and various integral equation techniques, can often
be used to advantage to obtain solutions of certain types of boundary value problems. For all these inte-
gral transform, integral equation, and other comp't variable tech.iques, the integral equation to be solved
is a form of the general Green function result, equation (4), with G - G + G , and the objective, in essence,
is equivalent to determining the complementary part of thn Green function so Fhat the surface integral
vanishes everywhere except where p and ap/an have pre-spccifted non-zero values.

As closed form solutions are very much the exception rather than the tule, and convergence of base
function series as obtained by separation of variables methods is reasonably rapid only for log frequencies
(or, in their asymptotic forms, for high frequencies in some cases), integral forms of solution equivalent
to the Green function 'ormulas (3) and (4) can be particularly advantageous when numerical computations are
to be performed. These integral forms, in effect, permit selection of that G which inspection indicates
may be most appropriate for the economical numerical evaluation of the integrai for each particular source-
receiver-scatterer situation. Integral transform, integral equation and other sophisticated complex
variable techniques generally, however, are inevitably the province of mathematical specialists. If they
ere to be used, their details and intricacies must be studie4 and mastered by reference to textbooks and
research publications for specialist expositions of their principles and applications.

6. PERTURBATION METHODS

Perturbation methods, like the integral transform and other complex variable techniques, are primarily
the province of specialist mastematiciane, but they usually can be more closely related to physical con-
siderations. Questions of dynamical stability of the reference and perturbed states of motion naturally
arise, and physical considerations aro primary in selection of the perturbation variables. In perturbation
schemes, the convergence of the iterative procedure is usually of an asymptotic nature, rather tha absolute,
and this can be an advantage when it comes to numerical evaluation. The most .iidoly applicable, and com nly
used, perturbation techniques for acoustic propagation problems belong to the class of matched asymptotic
expansion methods, which might also be called the WKBJL methods (Wentzel-Kramers-Brillouin-Jeffreys-Langer),
originated by Jeffreys and first given a sound mathematical basis and generalized by Langer. The idea of
such techniques Is simple. Given that valid solutions can be found in regions of the field to be determined
that are close to opposite boundaries, as it were, one devises, for the. governing equation concerned, an
asymptotically valid solution in the intermediate region which at least correctly matches, in an asymptotto
sense, the extreme "inner" and "outer" solutions at appropriate 'bonndaries" of their respective regions of
validity. Thus the solution as a whole may satisfy both the governing Cifferential equation and the
boundary conditions in only an asymptotic sense. The procedure can be very effective in producirg good
first order (and sometimes second order as well) analytic approximations to the exact solution, but it is a
general rule that the labour involved in obtaining higher order approximations by perturbation methods is
usually prohibitive. The advantage, from the numerical poiat oZ view, of asymptotic enransions is of
course that the errors can be easily estimated. (The error in the reprusentation of a faln:tion by n terms
of an asymptotic series is less than one-half the (n+l)-th term.)

Perturbation methods can be used for variations in boundary conditions, as well as in the governing
differential equations, from those for which solutions are known.

7. GIOMETRIC ACOUSTICS

For low frequencies, sepaeation of variables techniques involving base function series, together with
perturbation methods as necessary, often constitte che most catisfacto,.-y approauh, as convergence is
)-latively rapid. At high frequencies, however, this is not the case, and it is then oeten more effective,
and even necessary, to proceed on the basis of the geometric, "ray-tube", propa.jation of the waves that
would occur in t? tnflnite frequency limit. The propagation of the wavufronts can be calculated on the
basis of Fermat's principle of least time (or, what is in effect the same thing, Huyghens' principle).
With the wavefronts known, and hence their trajectories, the "rays", the problem is reduo}d to determining
the pressure amplitudes along each selected bundle of rays - the ray-tube. At thir stage the geometric
acoustic assumption is made, that of conservatio- ., i.ave eneray along each ray-tube, and the corresponding
pressure amplitudes obtained n accordance 'ita* the appropriate formulas derived on t;,e basis of this
assumption.

,/' . .,
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The most powerful energy conservation principle of this kind developed to date appears to be the "wave
action principle' of Bretherton and Garrett. Computation methods based on this principle have recently
been developed and used successfully for prediction of propagation of relatively small amplitude pressure
disturbances in fluids of inhomogeneous mean velocity and/or temperature - e.g., in the atmosphere, the sea
and jet flows. More detailed information is provided elsewhere in these Lecture Course Notes.

8. VARIATIONAL AND NUMERICAL METHODS

The most direct approach to numerical calculation in acoustic propagation problems, applicable to fluids
in arbitrary motion and thus of inhomogeneous thermodynamic state, is to reduce the partial differential
equations of transport of mass, momentum and energy to finite difference equations, as appropriate for the
problem of interest, and to integrate these numerically by standard methods, with the aid, of course, of a
large digital computer programmed for the purpoe. In physical terms, this is a lumped parameter approach.
Since for accuracy space step differences must be small compared witth the acoustic wavelength and time step
differences small compared with the period, this approach, although it can and has been used to good effect,
is usually prohibitively or impossibly er.pensive in terms of machtne time and capacity.

Considerable machine time and capacity economies are possible if instead one of the general weighted
residual methods is used. These can be regarded as including methods based traditionally, for vibration
problems, on variational principles, such as the Rayleigh-Ritz, Galerkin and finite element methods.
Adaptation of weighted residual methods to acoustic propagation problems, for purposes of practical
calculation, is relatively very new, still being in the research and development stage, and for details of
the particular and effective methods (i.e., comput(-r programs) available to date reference must be made to
current research publications.

9. BtBLIOGRAP11Y

AS the research and pedagogical literature on mathematical techniques for acoustic propagation problems,
even in only fivds, is so 16rge, and most of the techniques are so sophisticated mathenaticully, it has not
been possible to do more in the preceding sections than to provide specific information for only a ver few
of the most well- stanlishcd methods, those which, for the most part, provide relative maxima of physical
insight. Similarly, it is appropriate to list only a v2ry few selected references as suggested further
reading, these being the monographs which, in the author's opinion, provide the most effective, fundamental
and comprehensive introductions to the methods available. No suitably up to date monographs are yet
available on the subjects of weighted residual methods and geometric acoustic methods for acoustic propagation
problems. For these, and indeed for information on recent developments in all the variovs techniques,
especially insofar as efficient proceuv'res for numerical computations are required, regular reference to
contemporary research publications is necessary.
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DIRECTIVITY OF ACOUSTIC RADIATION FROM SOURCES

Donald L. Lansing
Head, Aeroacoustics Branch
NASA Langley Research Center

Hampton, Virginia 23665

SUMMARY

This paper will describe the radiation properties of acoustic monopoles and dipoles. The directivity
of radiation from these sources in a free field and in the presence of an absorptive surface is described.
The kinematic effects on source radiation due to translation and rotation are discussed. Experimental
measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and
propeller noise are reviewed. The paper provides an introduction to several essential concepts required
by noise control engineers making measurements of noise from moving sources in the proximity of the ground.

INTRODUCTION

When a noise source is brought near a surface or put into motion, a complex radiation pattern results
which may be wholly unlike that of the source at rest in a free field. Acoustic measurements made of
moving sources near surfaces for the purpose of characterizing the source behavior or understanding noise
generating mechanisms must accordingly be corrected for motion and surface effects. A common example of
this situation occui s when making measurements of noise from moving ground vehicles or aircraft during
takeoff and landing. The effects of reflection and absorption of soun~d by the ground and the kinematic
and dynamic effents of forward motion must be considered in the data analysis and subsequent interpretation.

This paper will survey the effects of the proximity of surfaces and the kinematic effects of motion,
both translatory and rotational, on the directivity of.radiation from acoustic monopoles and dipoles. The
interference patterns and attenuation of sound from a source near an absorbing ground surface are explained.
Three kinematic effects associated with uniform rectilinear motion, namely: retarded time, convective
amplification, and Doppler shift, are described. An experimental study of the measurement of sound from
an acoustic monopole in motion is discussed to illustrate the concurrence of ^urface and motion effects
under controlled conditions. The paper surveys rotating blade noise radiation. The characteristic direc-
tivity patterns produced by blade thickness and aerodynamic forces, statically and in flight, are discussed
to illustrate the features of propeller and rotor noise. General introductions to the kinematics of moving
sources and helicopter noise are contained in references I and 2 respectively. The paper concludes with a
brief review of several recent significant contributions to the theory of source radiation and its various
applications. This paper provides useful background to the paper in this lecture series by Maestrello and
Norum entitled, "Experimental Measurements of Moving Sources," and provides an introduction to several
essential concepts required by engineers making and ;nterpreting field measurements of noise from moving
sources.

SOURCES OF SOUND

The sources of sound in a fluid can be introduced by considering the field equations of linearized
acoustic theory. These equations, shown in Figure 1, are the continuity equation which expresses the
conservation of mass, the momentum equation which describes the balance forces in the fluid, and the
pressure-density relation which expresses the proportionality between the acoustic pressure and density
perturbations. The term Q in the continuity equation accounts for the time rate of production of mass
within the fluid. The vector whose components Fi appear in the momentum equation is any externally applied
body force. These three equations can be combined into a single well known inhomogeneous wave equation.

In addition to the field quantities p, o% and ui several quantities relating to energy and energy flux
in the acoustic field need to be mentioned. These quantities are the acoustic intensity and acoustic power
defined in Figure 2. The acoustic intensity is the time rate of sound energy flow across a unit area and
is calculated by taking the time average of the product of the pressure and velocity component normal to
the area. The acoustic power is the time rate of total energy flow through a closed surface completely
surrounding the noise source and is a measure of the overall energy in the propagating sound field.

The nomenclature and definition of symbols given in Figures I and 2 will be used threughot t the rest
of this paper.

Figure 3 summarizes the principle sources of sound which occur within a completely linearized acoustic
theory and present some practical examples of these sources. The differential operator on the left-hand
side of the inhomogeneous wave equation describes the propagation of sound through a quiescent medium whose
ambient speed of sound is c. The right-hand side of the equation consists of two teris which act as forcing
functions to the wave equation and can be interpreted as producers of sound. These two terms represent the
unsteady injection of mass into the medium and spatially varying applied body forces. Examples of the
former type of sound source are unsteady or transient air jets and vibrating surfaces. Every element of a
vibrating surface car, be modelled as a piston which appears to insert and withdraw mass from the surrounding
medium during its vibration. An important general class of examples of the sLcond source is aerodynamic
forces which develop upon bodies moving through a fluid. If nonlinear terms are included in the field
equations, a third type of noise source arising from velocity fluctuations within the fluid itself can be
derived. Examples of this noise source are turbulent fluid motiuns such as occur in jets, wakes and
boundary layers. Thus, this type of source is central to flow noise generation. The production of noise
by shear stresses will not be discussed in any great detail in this paper. The list of sound sources given
here is not exhaustive. Other sources of sound in a fluid such as convecting density homogeneities,
viscous shear stres;es and enthalpy fluctuations are known. The reader is referred to the specialized
literature for details.
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The radiation from an acoustic monopole serves as a convenient reference to use in illustrating the
effects of surfaces and motion on source directivity. The monopole represents the acoustic field produced
by periodically injecting and withdrawing mass at a point in space with an angular frequency w. The
strength of the source, QO, is the time rate of mass injection. The acoustic pressure, ra'tial velocity
component, intensity and power are presented in figure 4 for convenience and will be referred to fre-
quently throughout the paper to illustrate the changes surfaces and motion have upon the directivity of
sources. A fact that will be used repeatedly is that the amplitude of the acoustic pressure for a monopole
is constant on a sphere whose center is at the location of the monopole. Point harmonic generators of
sound such as monopoles and dipoles (to be discussed subsequently) are central to the theory of acoustics
since more complicated spatial and temporal distributions can be built up from these idealized sources by
linear superposition. One expects then that the radiation properties of these point sources will then be
carried over to more complicated distributions.

THE EFFECTS OF SURFACES ON SOURCE DIRECTIVITY

Consider first of all the influence of a nearby surface upon the directivity of sound from a monopole.
A simple representation of this situation is shown in Figure 5 in which the surface is represented by a
very large flat and perfectly reflecting plane. The boundary condition at the plane surface then is that
the normal component of the acoustic velocity vanish at the surface. This situation in which a sound
source is in the proximity of a large flat surface occurs for example during the landing approach or take-
off operations of a commercial Jet transport.

The mathematical solution of this radiation problem contains two terms, as shown in Figure 5. The
first term represents the radiation field of the given monopole. The second term represents the radiation
field of an image monopole placed directly below the actual source at an equal distance on the opposite
side of the surface. At large distances from the source the equation for the radiation field can be con-
siderably simplified as shown at the bottom of Figure 5. For the purposes of this discussion it is con-
venient to measure the distance R from the foot of the perpendicular from the source to the reflecting
plane. If one compares the pressure fields obtained in this case with that of a free field monopole shown
in Figure 4, it is seen that the amplitude of the pressure still falls off inversely with distance R but
that the two equations differ by the directivity function d(e) which is defined at the top of Figure 6.
The pressure is no longer constant over a sphere of constant radius but is also a function of the observer's
angular position 0, the source height h and the source frequency k. This nonuniform directivity comes
about as a result of the superposition of the wave fields from the direct and image sources. The combined
field has localized reinforcements and cancellations which produce a complex sound pattern.

The sketches at the bottom of Figure 6 illustrate the variation of the directivity function with
observer angle and source frequency. The sketch on the left is a polar plot of the directivity function
for a fixed source height and frequency. For a free space monopole the "directivity function" is a circle
of unit radius. As the sketch shows the radiation field of a monopole near a surface produced by cancel-
lations and reinforcements exhibits a lobed pattern for which pressure amplitudes can be locally twice as
much as in the absence of the ground; moreover, there are angles at which the pressure amplitude drops
completely to zero. The sketch at the right shows how the directivity function varies for fixed source
and observer position as a function of frequency. It is seen that different frequencies undergo varying
amounts of reinforcements and cancellation. Some frequencies experience complete reinforcement with
pressure doubling; other frequencies show complete cancellation.

Ground surfaces such as grassland, or tilled soil are not perfectly rigid as is the idealized surface
in the preceeding example. Most ground surfaces exhibit some degree of compliance to an incident acoustic
wave. As suggested in Figure 7, an acoustic wave reflected from such a surface shows a decrease in ampli-
tude due to sound absorption and a phase change produced by time lags in the sound-surface interaction
process. These two physical phenomena are represented mathematically by a quantity known as the specific
acoustic impedance which is characteristic of the particular type of surface. The specific acoustic
impedance is a complex number which contains both amplitude and phase information. The real and imaginary
parts of the impedance are known as the acoustic resistance and acoustic reactance, respectively. It is
convenient to define a quantity called the specific acoustic admittance as the inverse of the specific
acoustic impedance.

An alternate method of characterizing an acoustically absorbing surface is presented by L. Maestrello
in the lecture entitled, "Experimental Measurements of Moving Sources." This method makes use of the notion
of an acoustic transfer function between incident and reflected waves rather than that of an acoustic
Impedance. The two approaches are equivalent but the former technique appears to have the advantage in
that the transfer function is more easily evaluated than the impedance over a broad frequency range.

Some measurements of the acoustic impedance of dry sand and grassland, taken from Reference 3, are
shown ii. Figure 8. For these surfaces the acoustic resistance is nearly independent of frequency. The
reactance on the other hand decreases significantly with increasing frequency over the range of measure-
ments. The impedance of a surface may also vary with the angle of incidence of the sound wave. This
effect is sometimes taken into account by defining an "effective" impedance as the product of the normal
acoustic impedance and the cosine of the angle of incidence.

The far-field acoustic pressure for a source above an absorbing surface having a specific admittance
is shown in Figure 9. The directivity function becomes considerably more complicated than for the per-
fectly reflecting surface. Directivity now depends on the surface properties as well as the source height
and frequency and the observer location.

Some calculations of the directivity function d'(O) for an absorbing surface are shown in Figure 10
and compared with the directivity for a perfectly reflecting surface. On the left is a polar plot of the
directivity function for a fixed height and frequency and on the right is a plot as a function of frequency.

The specific acoustic impedance used in the calculations, 4 - 41, is typical of the measurements shown in
Figure 8. As can be seen from the two sketches, the effect of an absorbing surface on the directivity is



to reduce wave reinforcements so that pressure doubling does not occur. The frequencies at which pressure
maxima and minima occur are increased significantly.

In summary then, there are several observations to be made regarding the effects of a surface upon

the radiation from a source. The surface will produce a nonuniform directivity pattern due to the inter-
ference of sound waves from the source with waves reflected from the surface. These two wave fields
interact with each other producing reinforcements at which the pressure is greater (up to twe times) than
the pressure in the free field and cancellations where the pressure can go nearly to zero. Compliant
surfaces such as sand, soil, and grass tend to smooth out these reinforcements and cancelltions somewhat
and shift the frequency of their occurrence depending upon the impedance properties chara:teristic of that
surface.

KINEMATIC EFFECTS OF MOTION ON SOURCE DIRECTIVITY

When a noise source is put into motion its radiation characteristics may be sijnificantly different
from those of the source at rest. There are two reasons for such differences: kinematic effects due
solely to moving the source about in space and dynamic effects which may alter t'e noise generatirg
process or radiation efficiency of the source. This section of the paper will onsider the kinematic
effect of uniform rectilinear motion on the directivity of source radiation. , second important class of
moving sources, that is sources in rotation, will be considered subsequently n the paper. Moving sources
occur frequently in noise measurerent and noise control problems associated with transportation noise
sources such as automobiles and aircraft.

Consider then the situation indicated in Figure 11. An aircraft i in constant velocity, constant
altitude flight over an observer on the ground (for simplicity the sur'ice effects discussed in the pre-
vious part of the paper will not be included in the discussion of thi" section). As the aircraft moves
along the flight path beyond point A, the sound emitted at point A t Jvels along the straight line
joining point A to the observer. The aircraft arrives at point B wtcn the sound emitted at point A
arrives at the observer. That is, the observer simultaneously sees the aircraft at point 8 and hears the
sound emitted at point A. Thus, for a moving source two source rositions must be distinguished: the

position at which the source is observed and the position of th: source at which the detected sound was
emitted. Let IT be the distance between the observer and the emission point. The time taken for sound to

travel this distance is R. Consequently the sound heard at dLme t by the observer was actually emitted
Jc

at an earlier time I - R. This quantity t - referred to as the retarded source time. The retarded time

is the time at which the observed sound was emitted by the source. In order to deduce information about a
moving noise source from far-field sound measurements one must associate the measured acoustic signatures
at time t with the position and condition of the source at the corresponding retarded time.

Figure 12 gives the mathematical relationships between observation quantities and emission quantities
and presents some sample calculations. The Mach number of the moving ource is seen to be a fundamental
parameter in the transformations. The sketch in the lower left shows the difference between the observa-
tion and emission angles as a function of the observation angle. The sketch at the right shows the ratio
of the emission and observation distances. It can be seen that the difference between emission and
observation quantities increases as the source Mach number ;ncreases. The difference between the source

and observer angles is the greatest for overhead positions of the source. The ratio 11 is most sensitive

to positions when the source is approaching and less sensitive when the source is departing in the distance.

Figure 13 shows the mathematical expression for the far-field acoustic pressure of a monopole in
motion. This expression should be compared to that shown in Figure 4 for a stationary monopole. It is
convenient in this situation to express the pressure in terms of the emission quantities I and T. The
pressure still falls off inversely with distance from the point of emission. However, the equation contains
an additional directivity factor which is referred to as the "convective amplification factor." This
factor is a function of the source Mach number and the emission angle T. The equation implies that a
monopole of fixed strength Qn will acquire directional radiation according to the convective amplification
factor when it is set into u iform motion.

Figure 14 shows the effect of source Mach number upon the monopole directivity. It is convenient to
consider the difference in sound pressure level between the moving monopole and the stationwy monopole.
The sketch gives a polar plot of this sound pressure level difference as a function of the emission angle
for various Mach numbers. It can be seen that the sound pressure level increases significantly with Mach
number in the direction of motion. There is a 16 dB increase for example directly ahead of the source at
a Mach number of .6. There is also a decrease in the sound pressure levels behind the source. Note that
convection effects are absent at g0

° 
to the emission point. Far-field noise measurements for moving sources

are frequently made at this g0 position in order to eliminate convection effects from the measured data.

The effects of source motion on the radiated acoustic power are shown in Figure 15. This figure shows
a plot of the ratio of the power radiated at subsonic Mach number M to the value at zero forward speed (a
quantity given in Figure 4) as a function of the source Mach number M. The simple algebraic expression
for this ratio is given in the figure. The acoustic power associated with the moving monopole is calculated
by determining the time average of the energy flux through a cylinder completely .nclosing the path of
motion as suggested by the sketch. It is seen from the plot that as the Mach number increases the radiated
acoustic power also rapidly increases becoming infinite at sonic speed.

Another kinematic effect of motion on the radiation from a source is illustrated in Figure 16. This
is the shift in the observed frequency of the radiation. The phase of the far-field acoustic pressure Is
determined by the expression kR - wt. Introduce a cylindrical coordinate system (x, r) with the x axis , '

coinciding with the line of source motion and the origin coinciding with the position of the source at 4'.,.time zero. In term, of these coordinates and Ile source velocityUI and Mach number M the emission distance , ,, ,

-R can be written out explicitly as shown. The x, r coordinate system is a fixed set of coordinates in
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spacewhich then designate the observer position. In terms of these observer coordinates the phase of the5 acoustic pr ere along the line of motion simplifies as indicated. Directly ahead of the source an
observer will detect a frequency w/(l - M) where w is the frequency of the moving sourc?. This observed
frequency is larger than the actual source frequency. Behind the source the observed frequency decreases
by a factor of 1/(l + i). For a general observation position the observed frequency is the time rate of
change of the phase of the pressure. When the algebra is worked through the general expression for the
observer frequency is that given at the bottom of figure 16. It is seen that in general the frequency is
increased ahead of the emission point and is decreased aft of the emission point. Convective changes in
frequency vanish at the 90 a to the emission point.

ovIn summary there are three kinematic effects of motion upon radiation from a source. There is the
notion of retarded time, that is, that the observed sound was emitted at a time before it is measured at a
point which is different from where the source is observed. The directivity of radiation from a source
changes with the sound energy generally beamed in the direction of motion. And finally the observed fre-
quency of a moving sound source may be larger than or less than the true source frequency depending upon
the position of the observer with respect to the source.

It is important to reemphasize that these effects are solely due to the forward motion of the source
and are independent of the nature and strength of the source. These effects must he corrected out of far-
field acoustic data when the latter are used to diagnose the nature and condition of a complex unknown
moving source. In particular convection effects must be distinguished from fundamental changes in the

4 noise generation process which can come about due to forward motion. Far-field acoustic measurements are
frequently used to diagnose the presence of such changes in the source. As seen from the equations in
Figures 13 and 16, convection effects can be eliminated from the far-field directivity and Doppler shifts
in frequency by making acoustic measurements at 9 to the emission point.

MEASUREMENTS OF SOUND FROM AN ACOUSTIC MONOPOLE IN MOTION
A moving source problem of considerable interest in connection with aircraft noise is the effect of

forward motion upon the generation of jet noise. Changes in jet noise with forward motion occur due to
both kinematic and dynamic effects. In an effort to understand kinematic effects as they occur in actual
practice and to evaluate a theoretical model for predicting these effects an experimental study was carried
out of the effects of forward speed upon radiation from a monopole, Reference 4. Both motion and surface
effects which have been discussed individually in the previous sections of the paper make their appearance
in this experimental study.

The monopole source was mounted on top of an automobile 7.9 meters above the ground atop a mast
supported with guy wires as indicated in Figure 17. The source consisted of a 60 watt acoustic driver
necked down through a 1.52 centimeter diameter tubular opening. The source radiated approximately uniformly
in all directions when at rest. The output of this source consisted of tones of discrete frequency f. The
automobile was driven at constant speeds U ranging from 13.4 to 44.4 meters per secnd.

Figure 18 shows a schematic of the experimental test setup. The automobile was driven along a
straight track at constant velocity. The experiment was performed over an aircraft runway consisting of
an asphalt surface. Sideline microphones were positioned at heights, h , of 3.05 meters and 6.10 meters
above the ground surface. Pressure signals were measured with 1.3 cth'smeter diameter condenser ricro-
phones and recorded on wgnetic tape.

A mathematical analysis of this problem was carried out for comparison with the experiment. The
solution was obtained by the use of Fourier integral techniques and an application of the Lorentz trans-
formation. The solution contains both surface reflection effects and convection effects. The next three

t figures show some results of the measurements and analysis made in this investigation.

Figure 19 shows a comparison between the calculated and measured noise time histories. The specific
acoustic impedance of the runway surface used in the calculation is taken as 4 - 4i. The sound pressure
level in dB is plotted on the vertical scale. The horizontal scale is time normalized by means of the
source velocity U and the source to observer distance at closest approach a. The measured and computed
curves are not superimposed here because of the many oscillations in the SPi's which are due to reinforce-
ments and cancellations which come about due to ground reflection.

The smooth computed curve at the top of the figure is the predicted variation in the sound pressure
level in the absence of a surface. As the source approaches the microphone the sound pressure level
increases smoothly, reaches a maximum level at the point of closest approach, and then decreases gradually
as the source moves away. In the presence of the ground surface both the computed and measured sound
pressure levels show this general trend. However, superimposed upon this mean trend is a strong modula-
tion due to the motion past the microphone of the complicated pattern of reinforcements and cancellations
produced by ground reflection.

Figures 20 and 21 show the variation of the computed and measured noise time histories with observer
height ho and source frequency. It can be seen that as either the observer height or the frequency of the
source is increased the measured and computed SPL's become more and more oscillatory as the distance
between successive reinforcements and cancellations grows smaller.

ROTATING BLADE NOISE

qNoise from rotating blades is a pervasive problem associated with ground transportation. Blade induced
noise may cause vibration to vehicle structures, malfunction of onboard instrumentation and equipment,
annoyance in passengers, vibration in nearby ground structures, and interference with crew performance.
Aircraft having rotating blade components include CTOL, VTOL, general aviation, and supersonic transport
vehicles. Examples of rotating blade components which produce noise are shown in Figure 22. These com-
ponents include ducted fans and compressors as well as free rotors such as helicopter rotors and general ,
aviation propellers. This section of the paper will survey the fundamentals of noise production and
radiation from rotating sources.
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The noise sources for rotating blades are shown in Figure 23. These sources are the aerodynamic
forces such as torque, thrust, and coning which develop on the rotating blades and the thickness distri-
bution of the blades. Thus, in general, rotating blades produce both monopole and dipole type noise. Both
steady and unsteady aerodynamic forces may be generated on the blades. The former may occur for example on
a rotor in hover having a very smooth and uniform inflow. The latter are produced for example by skewed
inflow, or blade-vortex interaction. The sound field from a system of rotating blades is periodic in time

with a period andperiodicaround the axis of rotation with period I where B is the number of blades and
0 is the shaft speed. Therefore, the far-field acoustic pressure can Re represented as a Fourier series as
indicated at the bottom of Figure 23 in which Pn are the Fourier harmonics. The remainder of the paper will
discuss the effects of blade operating conditions on the radiation shapes associated with these individual
sound harmonics.

Since some of the noise radiated from rotating blades is generated by blade aerodynamic loads, Figure 24
which summarizes the properties of radiation from a stationary dipole is included for refer ,ce. An
acoustic dipole represents the acoustic effect due to the application at a point of a concer:rpted applied
force which varies harmonically with time at angular frequency w. In this figure the force is applied at
the origin in the direction of the z axis. The resulting acoustic pressure is given by the z derivative
of the pressure for a monopole. The directivity function in the far field is given by the cosine of the
angle lp between the axis of the force and the position vector to the observer. As indicated by the sketch
at the bottom of Figure 24, the radiated noise is a maximum along the line of nction of the force. The
pressure vanishes everywhere in a plane normal to the force axis and passing through the point of appli-
cation of the force.

The basic equation for the classical theory of propeller and rotor noise is shown in Figure 25. In
this theory it is assumed that the inflow to the rotor is extremely clean and smooth so that the blade
load distribution does not vary with time and that the rotor is stationary with respect to the surrounding
air. An element of area of the rotor disc receives an impulse each time a blade passes. These impulses
are represented by a distribution of monopoles and dipoles over the disc properly phased to take into
account the time interval between successive blade passages. The amplitudes of the monopoles are determined
by the blade thickness distribution whereas the amplitudes of the dipoles are obtained from the rotor
thrust and torque distributions. The amplitude of the nth sound harmonic, Pn(R, p) depends upon the rotor
operating conditions and the observer position as shown in the equation.

The characteristic directivity patterns for these harmonics are shown in Figure 26. This figure con-
tains schematic diagrams of the rotational noise radiation patterns for the thickness, thrust, and torque
terms contained in the equation. These radiation patterns should be compared with those for a stationary
monopole and dipole shown in Figures 4 and 24 respectively. For these sketches the rotor orientation
illustrated at the top of the figure applies, that is, the axis of rotation is vertical and the plane of
rotation is horizontal. The noise due to torque and thickness is a maximum in the plane of rotation and
a minimum on the axis. The noise due to thrust has a four leaf clover pattern with pressure minima in
the plane of rotation and on the axis.

The theory of propeller and rotor noise was modified by Garrick and Watkins to include the effects of
propeller forward spee., Reference 5. The expression for the nth sound harmonic is given in Figure 27.
The equation again assumes a clean inflow to the rotor which is in uniform forward motion at a Mach
number M. The equation is expressed in terms of the emission distance 1 and angle T of the observer. A
convective amplification factor is evident for each harmonic for thickness, thrust, and torque noise.
Additional changes in the far-field directivity result from the presence of the forward Mach number in the
argument of the Bessel function.

Figure 28 shows the changes which result in rotor noise radiation patterns due to forward motion.
Sketches are given of the torque and thickness component and the thrust component of noise for three
different low subsonic Mach numbers. The rotor orientation is as indicated at the top of the figure. The
rotor is moving from left to right. The plane of rotation is vertical. For simplicity only half of the
radiation pattern is shown. The complete pattern is of cource symmetric about the axis of rotation. Even
at relatively modest forward speeds very significant beaming of the sound in the direction of motion
occurs. Noise produced by torque and thickness is also increased in and behind the plane of rotation.
Therp is little change in noise produced by thrust in the aft quadrant.

RECENT DEVELOPMENTS IN SOURCE RADIATION THEORY

The ideas described in the previous part of this paper have been well known and accepted for many
years. Several more recent developments in the fundamental theory and application of source radiation
deserve mention. The work of References 6 through 12 is recommended to the reader who wishes to familiarize
himself with some of the current directions, controversies, and problems relating to source radiation.

Lowson, Reference 6, has developed an analysis for the radiation from monopoles, dipoles, and quad-
rupoles in arbitrary motion. His theory has been applied to explaining noise radiation from rotors due to
unsteady blade loads, Reference 7. Unsteady blade loads result from rotor-stator interaction in turbofan
aircraft engines or from blaz'e-vortex interaction in free rotors. Unsteady blade loads have been found to
be a very significant source of noise whenever they occur.

F. Farassat has derived expressions for the acoustic field of bodies of arbitrary shape and mtion,
Reference 8. Required parameters for noise prediction are the body geometry, time history of the motion,
and surface pressure distribution. The compactness of the sources is not assumed. The analysis is carried

+ out in the time domain and does not require decomposing the noise field into harmonics. The thieory is

particularly suitable for the prediction of impulsive noise from bodies such as high speed blade slap
from helicopter rotors, Reference 9. Such noise is particularly difficult to handle and understand using
Fourier analysis because of the presence of rany high harmonics.
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Lansing and Drishler, References 10 and 11, have obtained expressions for the sound field of a ducted
propeller or rotor. The acoustic field within the duct due to rotating blades is expressed as a super-
position of modes appropriate to the duct geometry. Corrections to account for the radiation into the
free field are derived. This work is useful in analyzing the problem of aircraft engine noise propagation
and radiation from internal rotating machinery.

A. Dowling, Reference 12, has recently published a new analysis of the radiation from a convecting
monopole. The monopole is represented as a pulsating compact body which interacts with the surrounding
fluid to produce both a mass and a momentum flux. The sound field from such a body has both a monopole
and dipole component. Stronger convective amplification effects are obtained than for the simple monopole.
It is also found that amplification in the direction perpendicular to the emission point may occur. The
results raise some perplexing questions regarding the proper modeling of noise sources of practical
importance.

CONCLUDING REMARKS

This paper has discussed the influence of the ground surface and motion - both rectilinear and
rotational - on the directivity of radiation from acoustic snurces. It was shown that interference
patterns are produced by reflection and absorption at a surface and that consequently the far-field direc-
tivity of an acoustic source near the ground can be substantially altered from its free field value. lhe
kinematic effects of motion which have been described are the beaming of sound in the direction of source
motion and the shifting of the observer source frequency in a manner which is directionally dependent.
Experimental data were shown to illustrate these effects. These phenomena explain some of the problems
encountered in measuring noise from moving sources and the characteristics of noise from rotating blades.
Reflection phenomena and kinematic effects of motion must be removed from noise data for moving sources
near the ground in order to determine the characteristics of an unknown noise source and to investigate
the dynamic effects of motion upon noise generation.
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Figure 7.- The Impedance of an Absorbing Surface.
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Figure 17.- Movit I Monopole Source Experiment.
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PROPAGATION DA34S LES CONDUITS

H. Pdru IliOffice National d'Etude. .t de Recherches Adrospatiales
92320 Chltillon - France

et

Universitd de Technologie de Cozspibgne

60206 Cocpiagne - F'rance

RESUHE

Lldtude de I& propagsatin d'o,des acoustique3 dans lea conduits sleffectue a
partir d'one dquation ('ondes dana laquelle intervient

- la Gdomtih du conduit,

- lea grandeurs mayennes et fluctoontes caractdrisanc le fluide,

- las propridtds acoustiques des paroia.

G ndralement cette dquation ne rpeut Otre rdsolue qu'A laide de mdthod'-s numd-
riques complexes e.1, at c;- jour, on ne sait traiter analytiquoment que des cao part!-
culiers qui correspondent & des gdomdtries enimplea.

Afin de mettre en dvidence un grand nombre de propridtds physiques on discite ile
cas d'un conduit infini de section quelconquv mais constante dans lequel sldcoule on
iluide uniformdment homog~mc, 11impddance acoustique des parois pouvant Otre ou non
absorbante. Puia on donne l'expression du caiemp de prescion pour diffdrentes gdomdtries
types (conduits i..ctangulairea, annulaires, cylindriquos).

I -HYPOTHESES

Les dquations de continuitd et de conservation de Is quantitd de mouvement de I&e mdcanique des milieux
continus sldcrivont

dans a Umesure ott Von ndglige la effets de vxbcositd, d'inertie, de gravitd, d'6chsnges thermiques.

Dons coo dquations ;j / I? i? . reprdsentent respectivement Ise densitd, Ia pression et Ise vitesse

totoles. Do plus, en sopposant le milieu isentropique on a Ise relation

(3) jP1 '2t

00 C eat le' cUldritd du son dana le milieu.

Posons, ofin do lindariser los dqueticns (I) A (3)

P~ve '~ ~V. w o0 (deoulemtnt homogne)

ave *- ./vc

<A > :indique qua Pon considibre Ia valaur moyonne dens ile temps do ile grandeur entro crochets).

Compto tono do roB ddfinitihnu, 4k Iordre on, lea dquations (I) A 0~) aldcrivent

(5 . V. V1 */%

(6) '
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En formant la comb inaison - 0 on obtiont, compte teru de (6), one dquation dquiva-
lente sux dquations (4), ( 5) et f6) qul constituent on syattme complet.

Tous calculs effectuds, cette combinaison conduit A

(7) ir c

ou pm reprisente I& preasion accistiquc perque par on observateur fixe par ra.pport A I16coulement
do vitesa moyeine

Considdrons (Fig. 1) on conduit 3dmettant Vsa':- dont is direction positi-e eat coltnE'n1re A
Noun soPPosons que la section droite de ce conduit est de section, do forms ,jt de dimenaior const..nto, at,
onfin qu'il eat do longueur iii. Ces hypothbacs non forcdment rdalistes soot parfois valables locale-
mcnt. En effet, si lea variations de section soot pettenl devant lea longueurs d'ondes acousdiques axi.oles,
alors l'hypothbse de section constante oat localement acceptable. Si lee variations axiales do l'Ecoulpm,,t,
clost-&-dire si 1e gradient axial do 114coulement eat petit devaut 1e nombre d'onde axislo, alora l'hypo-
thlse d'dcoulement localement uriforme eat dgalement acceptable.

Nous allons chorcher at ddgagerlea principos Lanentiela attachds &I 'dquation (7). Pour cola ddcom-
poaorns le vecteur tridimensionnel r en deux compoiantes

- l'une videmment dirigde lo long do l'axe

- I autro at itude dans on plan~ nerpendiculaire Zi cet axce

Do plus poaons : rt) = (PP(Z,6-)

Avec cos conditions, (7) est Equivalent A

(8) '-= z

soitt encore

'6d 'P (fr7 ±(a.2 ) 2f~1 pz

Pour quo cotte dgalitd soit aatisf~ite, qoel quo soit z at Z ,il faut at 11 suifit quo chacun
des deux membros soit 46gal A one mkie qoantitd constante qu., Von appollera - V, otl 7", est rd. Ce
choix eat dict6 par des c.ansiderations dnerg~tiq~zes qui scront explicitdes so paragraphs

Danc cos conditiona, noun avons 1t rdsoudre lo systame 6&quivalent

Rdsouare lIA4quation (9ae) 4quivait A rechercher, poor I& formue particuli-.e donnde de l'opdrateur 44
ilnsemble Cvs vaeurs propres ?- '?) assocfdos aux fonctions pzopres pi) de cot opdratesr. Ce4 p~oMbme peuw ttre traitd de fnon gdr'drale (clest-a-dire poor on conduit d(. section quolconquc), compte
teno do condi'iona aux limitos fix~es A Is paroi do conduit. On pout rdsoudro l'Equation (9b) suivant daux
m.~todes.

La premilro consisto 1 conaid~rer on paquot d'ondoo qui so propoge dana le cor.duit le long do Ilaxe

dl-mndc axial et c~ la frdquon,- arguloire p~ s et~)o c a onmr

Toutu transforistioi effectuee, (9b) slEc'it, avec Kcz -/Cl et, 1q.s nombro lo 6ach axial do
l' coclement, Egal a 11.

(l0a) (k _(K _M. k'.)+ T2] (k, 0

Pour quo Ia relation (l0a) aw~ette one solution non trivialo, c'est-&-dire, pour quIle soit s&,tis-
fo.te pour one onde d'amplitude non idontiquerpent nullo, il foot ot il suffit quo

2l) (:( J1ka)+ r

+I



6-3

LA relation (11) eat Is rvlation do dispersion des ondes damplitude Cette relation

P our cheque valeur pore de Ilopdrateur A.. et chaqie frdquence w impose Ia valeur de kz. Elie eat
donc ~1 dwl om ~~u) = 0 CGn dit ausal quo (10a) eat Ilimage de Fourier dana l'espace et dana

le tumpa de (9b).

La asends mdthode, cae particulier de la premiire, consiste A rechercher des solutiona harmoniques de
(9b), c'eat-h-dire des .solutions de Is forme :s u,* v~kz , multipide dventuellement par une
conatante arbitraire )D qtci reprdAente llamplitude de l'onde (inddpendante de z).

Oil erouve3 tout calc"l effecrud

(lob) fI T + kz (K Mk) 0PY~kZ)

Cette relation eat satisfaite par toute onde harmoniquc de Is forme, proposde dont lea k, et lea wv
satlafont Is relation de diapersi'u (11)

(11) T2+ 0 (K -M. o,)
La diftdrence physique do ceo doux mdthodes fat Avidente

-lI proeoic- conduit A Is not~on dst paquets dondes d'amplitude p~.Iw) satiafaiant Ia
relation (11) 1

- Is seconde, A des ondes harmoniques, coo porticulier do Is preitre forme et satififaisont Is name
relation. De meme, on suroit pu ddiiuir ces modes harmoniquos (en expGc W6~ ) enl ddcompoosnt ell
adrie de Fourier pjo ,., . ous trovorions le mime rdsultet, chaque frdquence w~ devout vdri-
fier (II).

Dana ceo conditions /C~ )

oP aot solution do

(12) K- M,()~ [(~ k,) .. k~Jp 0.

Dana le ropire lid 4 l'dccilloment, clest-A-dire pour un obaervateur portd par Ildcoulement,, I'ondo eot

(au fac teur C. prba) de frdquenco WK- K - M kz donc, pt-;T) eot jolution do

(13) A p )±(KI±. 1) P(-) Q

L'dquation (13) a une forme qui corresp nd b cello qui s-rhit obtenue dons ie caoo Is1 virzoooe V. d,
l'dcotilement aersit nul. Avec to's cvk Vo, ,eo'trq-%nce do lodo dons le rcp~re mobile, et, cosmi

(' 'c, reprisente Ie nombre d'onden, tot"al et ka le llpkre diondeoaxial, lea valeuro propros do
l'opdroteur A~reprdsentent le vecteur d ondes transveral K- tel quo

(llbis) OK'1

Do mime dans le rcpbre fixe (ou enl prdaonce d'Acoulement ayant cantos lea propridtds mcntionndes ci-

.Iesaus) on a

(liter) (K -k. M.)Z k x+1K 2

La relation (Ilbis) eat paire enl K' et enl k. . 11 n'oo t03t pas do mitme pour (liter).

,nnditlonc aux limites

Do 1'dquation do conservation do lo quancit4 do mouvement

S +V,) * V P 0
on ddduit

(14) A -.( yr.

W'oo le rdsultat fondamental suivant

la vitesse et Ia preasion ocouotique ne sent onl phase quo si, et sculoment si, Vp eot le Is ioame
;p o~m p eat induSpendant des coordonndes d'espace.

Les conditions aux limites imposont quo, A Ia paroi, le rapport do la presion acouscique NIs lVite3se

normale b !s paro. soit 'gal .1 l'impdnce aouatique do Ia parat . a, vec =Z/'c,



A. Apelons V2 ' -IN le produic de is vitesse de llonde acc'estique 1- pot le vectour unitaire
Nnorisale A is paroi cor.siddrde.

La condition aex lirsites sldcrit

60s =p zZ' ) V,3 is parol

Do (14), on ddduit quo

(16) 2r. N 11r N

Done, (15) eat dquivaleat A

Rappelons que ta vitesso Lr de Ilondepcut ttre ddduite du vocteur ddplacozsent .tt. qui, en prdsence
d'dcoulement, conduit AInl relation 30 sit 't -' C I.k) t, en l1absence d'dcou-
Iement - ~ ~,f

Au. niveau de In paroi on a, a l'intilrieur du conduit

(dans Vdpaisaeur de Ia paroiO (pour l'onde ele-rsa)

Woen dcrivant la c~ntinuit des ddpla.emnt

(18) (z (V'O~) 11 l paroi

Lek rblations (17) et (18) sent diffdreniec, quoique voulant reprdsenter le raeme phdnombne. En rdalitd,
n,)us ovons cffectu6 une erreer de raisonnement due au fait, qu'Zt la paroi, la vitesse eat simultandsent
daplitude I rol et d'aplitude nulle. 11 faudrait dcrire en toote rigueur quo le vecteur dcplaement
Si(S A 1'onde acoestique et arrivant .1 Ia parot eat dgal en amplitude et en phase A celui de Is paroi, clost-
AI.dire dcrire de faqon tr"s diaillde les conditions aux limites. Co point particelier a conduit A de
nabreuses discussions qui. perdont de leer int~rtt pour les applicatxon pratiquos pour losquelles souls des
cjlcuils numdriquos A Ilatde d'ordinatoer pormottont do rdsoudre conveaablorscnt 1L relation des conditions
aex lirstoes en prenant en compte le rdel profil do vitosse, cc qui pormot do lover toute anbigultd. D)ana
,.. travail noes no cortsiddrerons quo Ia relation (17) ais noes avon3 tonu 4) attirer llattention sur cc
poi-nt, & cause des diffdrentos formos quo V'on pout trouver dains la littdrature, Cc point do discussion est
&asns intdr~t dane le cas do parois prfaitrsent rigides jpovr lesquolles fZI/ /eo/o.. 'ZT 2C ainsi quen
l'absence d'dcoulement, puiacque TT. =C entralne Ilidentitd des relarions (0) et (I8).

Enfin, lorsq'i-l existe rdellement ccc discontinu.-i6 do viresse, In solution proposde do l'6quatiLon
de Ifelmoltz eat feusse puisqlelle no tient pas conpte de ootte discontinuid. Dana to cas il fact rdsoudre
catte dquation au sons des distributions.

2 - MIJESSE DE PHIASE :VITFSSE DE GRO'JPE (Fig. 2)

La vitesse do phao j. = wv/4 roprdsente la vitesse avoc laquollo Les plans do phase constante ko
ddtinic par (wt-r k5,Z)= t4 so ddplacont . (.1 a L ±- = N- = mrs

Dana Ie cue d'une onde dispersive, (ozi k eat fonction do wv relation (11) par exertplo), la
vitcssu do groure -rl Sujl/ k roprdsonto fa vit-esse avoc laqualle l'onde so ddplaco. *.ous vetrons quo
dana le taso ~i Les paroio du contuit sont prrfaitoaont rigides, cocco vitosso slidentifie avoc la vtosse
do transport de ldnergio. W~ns le cas do paquets d'onlos In vitosse do groupe correspond I In vitosse avec
laquollo Los ondos 61dmentAires coruposant 1e paqet d'ondes n'intorftront pas do manu~re destrfuctive autour
du point do phase stationnairo (ddlfini rat Ia relation do dispersion) : (/. _j=:: _ O

La relation do dispersion (11), oiplque

0 k 7 (K M- ki)
Jr,dans le rep~oo li6 A Ildcouiement, de Is relation (llbis) on ddduit

(20) K)

d'oO

(20birc) VKI~ K 'i,+ i
'd k



La vitesse da groupe sc comporte corona une vitesse 'clasaique" de l~a racanique puiaque

(viteasa dans (vitesse (vitesae dana
replbre absolu) dlnrteet + repgre relatif)

3 -EQUATION DE CONSERVATION DE LIENERUtE

La systlme d'dquation (4), (5) et (6) dtant corapletI l'6quaqon de conservation de l.'dnergie n'tatt
qu'une consdquenca de cea 4quations. ?our l'obtenir calculona 0z.s e t compta tenu de (4) et
dc (6), on obticnt tos calculs effectods

Id 40 t2 P

V. [w7. +T71

Corte dquation a l~a farmea d'ona dquation de Poynting obx W eat l~a dansitd d'dnergie totale

06 z eat l~a densitd d'dnargia cindtique,

et PI la densit4 d'dnergie potentiella

.T est l~a dansitd de flux d'Cnergie totl w 1 4  '

W eat l~a dansit6 d'6nergie totala convectda par l'dcoulaarant (ba Isvitas3a V. )

P Sr eat Isa daasitd d4nergie de l'onda.

La vitesa da transport d'dnergia 14 qui reprdaanta la vitease avec laqoalla lea flux d'dnargja
traversa la aection droite du conduit aat, par ddfinition, dgalea A

4 M- 4

cr6 </78E > raprdaante Isa valaur moyanne dana le tamps de AB

at 7513 reprdsente Isa vabaur zaoyenne de AB sor Isa aection droite du conduit.

D? notra ens, loaxa reprdaante ona direction privildgide puisque eat on axe de symdtrie,
donc io, eat colindaire Zt Paxe des 3 , at

Va. = ,+ ,Pz>
Roppalons qua ai A at B aont dcritas an notation coaplaxa,

avec ) x ,

at : on

doneA'yKs~ 2 < (,,.)z, ;6 >k

dana _ _ ____ __ 2

- i __ __ __

kz

ePavtecpeU FE



Remargue calcul de I -Cp VL>

Co.ae,-

dt6o 76 1 < V ) et a r)tir -L Pap1~i m o

On en conclut que dans ce genre de conduit

-section de forme quelconque ais constante,
-dcoulesent homog~ne uniforme,
-milieu non dissipatif ( vi et k. rdels)

l'dnergie de Ilonde se propage, en moyenne, colin~airement A i'axe -~du conduit.

Calcu de 4 W> W W~A.;'z .-

igI-

-1 -7d -1 1

OnID dCdui pArs. A.,.p

enot iterant pa ratin d ace dsesien tenan cemt dsI ctoniis aux imites ui coiiqet queai

Pr)a 2  la paroi

d'o6x T /V()z/~Ti

(Ce rdsultat justifie le choix de Ia cLasse des valeurs propres pour la forme choisie de A..puisque
l'~nergie cindtique est un scalaire dffini positif).

Ce rdsultat rmsarquable mdritu un comentaire.

En effet: z -w - eLPJL _

avec: * - z

IZE K - .

Ces relations nontrent d'une fagon dvidente que

rLadensitd d'dnergie potentielle est toujours diE Edrente de la densit6 d'dnergie cindtique, en tout
point de Ilespace et A tout instant e Cette propriAitd eat encore vraie en moyenne dans le tems.

PAI
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Cette remarque est effectivement valable en tout point de l'espace, que Von tienne ou non compte desA
conditions aux limites.

Pour que l~a densitd d'dnergie cin~tique dgale lo. densitd d'dnergie potentiello, Ul faut et ii. suff it
que:aIIi~ L&)=~i

oi P esc inddpendant de ~L et, dens ce cas

Dane ce cas, on a bion lldgalitd des densitds d'Anergie cindtiquo at potentielle or Ilonde est do la
forme gdndrale

ol l'amplitude P s et uno cons tante et 1 ~= c.

r ~k .r est ddcompoed en k . =V
pour tenir compte de l~a direction privildgide imposde par l'dcoulement V

Cette onde est une onde Rlane, seul cas d'onde pour laquelle lea densitds d'Anergie cindtiquo or
potentielle sont dgales.

On comprend alors pourquoi le rdsultat prdcddent eec romerquable, A savoir

z~~~w(A -- k.W~ X.)~

En effet, co rdsultat moncre quo pour un guide do section quelconque : cylindrique, annulaire, rectan-
gulairo, ... , mais non dvolutive dens llespace or seulement dens le cas ol lee parois sont parfaitement
rigides, slots dens toute section droito du conduit l'Anergie cindtique est dgalo A lldnergie potontielle.
Cest-4-dire quo lee vaeurs moyennes, dans le temps or Sum l. section droite du conduit des densitda
d'dnergie cindrtique et potentielle sont dgales.

Llhypothbse "parois parfaitezsont rigidee" eec essentielle car c'est ello qui nous a permis d'dvaluer

pour de pamois quas i-rtgides, telles quo pour rout mode, Isa longuour d'amortiesement eec supdmieume Ila
longuour d'onde axiale (bypothtse de parois "localement quasi-rigides" qui implique quo

Cee considdrations 4tent faites, mevonone A l'objet du calcul

\41~ 0  kV

(21) MM + Mz

(2lbis) V (V k / 0o wk± 0  V~-

Nous roconnaissona dens cette dornilsro relal.ion, l'expression do l~a vitesse du groupe Zr calculde
dens Ic repbre absolu, puisque 4. k, V.) est la vitesse do groups dans le reptme lie'I 114coule-
mont./

D'os le second rdsultat important do ce pamagmaphe,

l~a vitesse do gmoupe s'identifie h Ia vitesse de transport d-- Ildnemgie

do l'ondo pour tout conduit do section quelconque, constance, A pamoirI parfairement rigides or en prdsence d'un dcoulement unifomme.



4 - ETUDE DE IA REIATION DE DISPERSION'(U) * DEFINITION DES MODES

(11) v'+ k,2 -(K .z 0

(11a) ~L~,k2+ 2 KNk - f 2-T*)0

(22) T

(23) KH t(AM:J ) T

Nous allons dtudier des formes particuli~res de (23).

4.1 - En 1'absence d'dcoulement (M. = 0)

(24) k. ± t K .. 2

La forme de la relation de dispersion eat prdsentde sur Is figure 3. Cette courbe eat symdtrique par
rapport A l'axe des K (des frdquences). Au point K - T, k' 0 donc (X =27/k' .. ).et la
tangente en ca point eat infinie, donc a1 /

Pour 1< 4T , k, eat imaginaire pur. Poaons k, a Z C donc zxp i(~t-44 =):xllieut ocz
Pour o(>0 :c z eat d'amplitude croissante avec Z , ce oui n'a aucun sens physique, puisque par
hypothbse, le milieu ne contient pas de "rdservoir A'E2e5gie" permettant tout m~canisme d'amplification,
et, at.Z eat damplitude d~croissante avec z ,ceat-&dt.re :onde Avaneseente, ou onde non propaga-
tive.

K T' ddfinit l~a frdquence de coupure WcV = 7. . Le conduit so comporte romse un filtre pasae-haut
en frdquence pour l~a valeur propre T conaiddrdo.

Pour K>7' , k2z eat rdel, l'onde aroustique monochromatique de frdquence wu osrille le long de
l'axe z avec l1a longueur d'onde:

Sur Is figure 3, nous rearquons eque Ie produit H .m eat positif ou nul, quel que soit K
DonecM et ? sont do m~me signe.

Pour w =w, , frdquence de coupure,M O e t, Nlfp

(11inverse de Isa tangente A la courbe do dispersion reprdasente la vitesse do groupe).

on appellera mode aval lea modes te-s quo Mfj et H? sojent tous deux positifa. Ces modes se
dfplacent dana le s-nde l'Ecoulement. On eppellera mode amont lea modes tels quo MIfo ot P?7 soient
tous deux ndgatifs. Ces modes remontent ldoulement (Fig.74).

4.2 - En prdsenceu n dcoulement subsonique (N. <-I

-KM. 1 T

k± eat purement rdel pour K;D'L(-,- If9 donr l'amplitude oscille continament Ie long de Z .La

re'Mton de dispersion des ondes aubsoniques eat trarde sur Is figure 5.

Pour rhaque valeur do K on a deux valeurs de a

ce gui ddfinit un moda aval

Soit V-4 -iv T7 K T alors KM -k

(4- N,1)

at, 1f, Mp < 0 avec Nj >_ et Mp 0

On appellera un tel mode mode amont inverse, car bien quo Il'nergie de l'onde so ddplaco dana le
sens de Il'coulezaent (M: >0) ,lea plans do phase constante, so dd, atent at contrp.-courant

(/4' .4 C')
-sik KM. pour V>TVZ f

&lore

at M~/k ~ aver e1 t P tous deux ndgatifs, to qui d~finit bien un mode

amont (Pig. 6).



k. est compiexe pour Y .A'L.

Iduns ce cas l'onde est d'amplitude ddcroisante d'autant plus rapiderent que K eat petit devant .
tout en oscillant avec le nombre d'onde(j'ff./(W-1f) .C'est une onde oathl-

lante amortie. wc, = c:TF-i4 dffinit Isa frdquence de coupure de l'onde oscillante considdrde,
le conduit, se comporte encore comme un filtre passe-haut pour Ia valeur propre choisie

4.3 - En prdsence d'un dcoulesaent sonique (i '

Loraque

alors

(11a) ts~. Kk, K.J§

Sur Isa figure 7, on constate que b une valeur de K ,correspond une seule valeur de et non
deux valcurs de tz coasse prdcddement.

La frdquence de coupuro W,_. Lend Vera zdro, comme le asontre l~a relation w, = C
dana laquelle Aj -1 ~

Nous romarquerons aur cette figure, come Sur l~a figure 8, que Isa tangente ai Ia courbe de dispersion
k,.(w) eat touloura positive contrairement sux deux cas prdcddents oo, elle pouvait atre dgalement

negative.

k.:e et o O k~ <=4> > m8 mode aval

k, -< .4; my o ode amont inverse (Fig. 8)

4.4 - En prdsence d'un dcoulement supersonigue Ho I, > )(Fig. 9)

Ott 0(1 z. -) eat atrictement positif. Done kz. eat pureztent rdelp et, dana cc cas, l'onde eat purement
oscillante le long de l'axe Z pour tou.e valeur do K,

Dana cc cas. Isa notion de frdquenCL do coupuro diaparat?.

Vk, 1 >c puisque l~a co,.rbe est monotone croissante.

c, -3> M5Pa mode ava.

k, --- y . Me C node amont inverse.

Une onde acoustique ne peut remonter on dcoulement sonique, a fortiori, suporsonique (Fig. 10).

5 - CALOJL DES FONCTIONS PROPRES DE L'OPERATEIJR

Pour calculer lea fonctions propres do l'opdrateur bidimensionnel A~,il eat ndcessaire dWen exoli-
citer Sa forme. Nous choisirons pour cc faire, des formes clasaiquos de conduit :conduit rentengulaire,
annulaire et circulairp. Dana le cas du conduit circulaire et a titre dlexeiaple nous expliciterons des
solutions analytiques dana l~e cas de parois quasi-rigides. Peour lea autros formes de la section droite: du
conduit nous nous contenterons do donner lea relations Ai rdsoudre numdriqueent.

5.1 - Conduit rectangulaire bidixsensionnel p(,Y,z,d).m sp (X(,Ze) (Fig. 11).

Avec des parois parfaitement rigides

(Z C~.2,1) =-- C'6 ~ h rk'Z avec J75 pai
~. / impair

La coefficient a dtd introduit pour quo l~a normo de p(2z,~ soit kgale A -14F4>J7 = 1 .Cola eat paLfoiS utile.

Rg.Ation de dispersion

Avec des parois -ion rigides

Posons pour 9L. =- #On a

C4 Pt, a) Z)

/j



a~ P st une des retines de Coej 7 - - -E (

avec pour R t,

S:fpour a4 R- A at oL) 1 'on a posd X c) afir que at k, sojent

rdels pour wv rdel (cf S§.) 1etArmrurqap. eat de Is forme

Autre forme de is solution

'P, Z)
est lVune des double raclines de:et _

avclam~mes ddfinitions qua prAdcddemment t

Relation do dispersion (A_ k. M.)

5.2 - Conduit rect4glar trdmensionnel (Fig. 12)

Avec des parois rigides

-) C- Ar' C- y ex~,k) pairs

/ l'y ~ ~ .S~ yae:, o,, impairs

ou bien

3 s pairi t' impair
ae impai r pai

On obtient 4 cas qui correspondent aux combinaisons des modes pairs et impairs suivant les axes -;- et
puisque Cos et Sin sont tous deux solutions do goJ

Relation do dispersion:' Otg /, k z (R

A-vec des parois non rigides

Appelons Z _=EP .Z, avc .=.X,, 11ipddance des parois s7irudes en m~t. - _to
If-c i n Y .: -

.y avec.:. cellos qui sent situdes en ~. En s'inspirant de 5.1,
on ddduit aisdmont lea 4 combinaisons possibles entre des modes pairs et impairs suivant les axes x~c ctV:

-, 1): /D JL - ct-kz

encre solution de : ~ ~ ~ ~ 1, .±

ouecoeN -e 4;/1)

Relation doedispersion t
__-r k6 (A kz 9

5.3 - Conduit annulaire IFig. 13)"Y

Appolons Z,,. 11impfddance do la paroi interne du rayon 0,. ut l 1impddance do )a paroi

exteino do rayon 6 ;Z,. mfc, , e" n posant

la pression do chaque mode (an, n) cat ddfinie par

OcA los 7-.,, sont ddfinis par los solutions simultandes des doux relations:

,i'7,,ct _ . 7 6 2 6

~~~A-. b Ii) KA.kf





q ua e /7r./. e 0 .' 2 il faut dtablir utte relation entre X et R afin

quocccdeux relat ons soieut hono ne01'C

*le meccbre de gauche de (29b) eat d'ordre un, car hoiaoglne -(.A

le membre de droite doit l'8tre, done ndcessairement llql/xJ4 -d.

Dana ces conditions,

317 ) ~ - )(;x:L (29a')

(29) j ~
f0- T ez7(*j 71 -_Y______ (29b')

Supposone la relation (29a') rdaolue, alors I' et o( aont calculda par lea relationa (29b') et

(28) pour les valeurs choiscs de X, RI K, Mo En particulier, rearquons quo si I)(I-.. alora

Jet (T'a) 0 at ,oL) est dgal aux va leura des zdros de o . s notda P(,, our chaque

valour do m , il ex ste une suite infinie de zdro de3
5.5 - Rdsolution graphigue de (29a')

De(28bie) on d~duit.13a A

En rdgime subsoniguc 4~

out purement rdel pour 7,ct -I-30 0 u pr d dfinir Ia frdquence de

coupu('lcdu conduit qui so comporto comae un ficrepase-haut. Corapte tenu de (30)

o- a. ccc stricteroont ndgatif

strictcent positif pour 7,a Z_ Kct.

str2icremecut ndgatirf pour 7' L> A re

En rdgimc e range >1

V Ka~c r, /S. !cL. cat purcement r~Iel.

ac. eec Strictlnent positif

atrictcment positif pour 9a Xro Ck

c3- a nul pour : o 7ro-

atricicraunt ndgatif pour : £(a < T, -.

Four rdAoudre graphiquen (29a'), pocons

Dloa, r.~aoudre (29a') dquivaut Zt rdsoudre

zdroa:do pour Sfcr~

d~dmets c Is uitedes dr uev73 droittdedeI vte

norm leA l paoiV, nule lpuro.cp,

Rappelns que rapecorrepodl ocind eslt lergduzo.Epaiuir

c0cDte &odretu opec - 6- aoA? id

.....................................................................-. *



Par analogie on pourrait dire qua pour la frdquence w considdc Ko. fixd) le conduit so comporte
comr. un filltre spatial paste-bas puisqua lea modes de ran& supdrieur au dernier mode (n , n) tel que

4- Kc soot dvanescents. On dit aussi que seuls les modes de rang peu dlevd sont propagatirs.

"Cette propnift4 de filtrage du conduit qui se comporte
"come un vdritable guide d'ondes, cist gdndrale loraque

a 5 t pour Z quelconque.

Loreque s~-~ lors a~X. n retrauve le rdaultat caractAdristique des parois parfal-
tement rigides.

Loraquu (.. (aver R -)0 plus rapdement quo X~ afin qua lea ddveloppements limitds adoptcis
rostent valables), ulore ... on retxouvo Ie rdsultat caractdrisltique des parois parfaite-
mont molles.

Ces co-iclusions roscont vraies quello qum soi: la valour
11. come on pourra ais6ment 1e vdrifier A la lecture
de paragrsphes qui suivent.

Pour A bornd, 1>_ east fonction de Km, , donc d2 la frdquence (Fig. 16). Do cc fait, Is courbe
de dispersion J( .KO)reste de forme hyperbolique (Fig. 3) minis sere d'autant plus distordue quo m
east procho de

5.5.2-Enedocd'ncolmn u'oie

pour t~.) K o ay.. Cr' E.,-

avoc ~ V :J x loraque 1 . KA

-V L'alluro do la fonction JtJ eat prdsent4do our la figure 3. On remarquort: en partic-lier quo

le1 point C cot d~gfini par Ko. T C. et . 11.I correspond au changement do signe do

V . soit de L', (Fig. 5).

le1 point A eat ddfini psr 1. z . i~ c- qui d6finit Ia frdquence do coupuro (point A,
Fig. 5).

Loraque M. -4 0, At - C. oat d'autant plus I'vontrue" quo M.eaOt plus proche de I'uil6.

Les _z sont fonctions doe r' soit d- la frfquoncm W , lorcque X eat bornd, non nul. Do
ce fait, M relation do dispersion ( Iix ... V) eat semblablo A rello tracde sur la figure S, mais
eat ddformde par la ddpendance en Y(ii des ~.~ sauf dons la rdgion des (Kr') trbs supdrieu a sux
valeurs des P, 2. . 11 oat dvident qu&b chaque mode (r~) ddfini par .() a1 X mlt 11.
fixds, correspond une courbo do dispersion.

11lest Aremarea.er quapour ,--.,,1 m ot -0 : 1 .C = XO 0 .Dance cas:

Le mode (0,1) pour X->00 oat un mode plan puisque le long du rayon l'amplitudo ot la phase de
Ia prossion acoustiquos soot constantes,

C'esL Ie soul mode plan possible dans un conduit. Cett
propridtd oat vraie quello quo soil Ia valour do M.~

En consdquence lorsque 1I-4 -0~ il n'existo pas do
modes plans dans un conduit. (Cotto propridrd eat indd-
pendante de la valour do H1 .

5.5.3 - En pr~sence d'un dcoulomentsonigue

I (o, ) t X pour To. .. Ka

Aux points d'intorsection des counbes t1 :ILcorsndueuienfi esl-
tions i., tmlles quo 1% ! mtr corsodu8.ut nined ou

5.5.4 - En~dec 'ndolmn ueangm H 1 (Fig. 19)

por T, -r EoV,.'o E~Ta~~ E. 't,

po1 L_ *COO
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or:V '-
On trouvo une coublc suite infinie do solutions, t ellcs qua [X-- -

avec

clest-&-dire qu'Zt Is condition de modifier Is notation il n'y a qu'une valeur do
considdrer pour calculer )
pour X -O 0 . 0-',. tendent vers

6 - IAPPEL DES PROPRIETES ESSENTIELLES

Ra guise do conclusion rappelons et rdsumons les propridtds essentiellos misc3 on dvidence et qui sont
Presque toutes gdndra1et, mAlg,:d le caract~re apparemment restrictif des hypothtses.

6.1 - Conditions aux limites

A Ilaparol : 0. Z20,j

1 1 quo choisir 7

- la relation 17

ou?

- ia relal*ion 18

Pa: d'ambigu~td apparento pour

Et pour 17-1 fini 7 doux attitudes sont poSibles

*lo probUme est aaal posd car, Ak la parol, l'dcoulemcnt no pout ftr aimultandraent d'amplitide nullao
cc d'amplitude \'o . dok ndceusitd d'introduiro le vrai profil do vitosso at do rdsoudre par calcul
nuMdrique l'dquation des cundes.

*Ia vitcsse dtant Cgl Vk'o et 0) pour f ,on ':onsidbre C', fcttZ rpraa
l'impddance vue par Ilonde au .-ayon r*

6.2 - Vitosse de transport do Ildnergie d'uno onde

*La vitesse do phase oat portde par ia normato au front d'ondes.

r I. gdndral prossion at vitosse no sent pas des grandeurs on phase, aauf pour iine ondo plane.

*La vitese de groupa nWest pee3 forcdmen. colindairo 4) Ia vitesso do phase (sauf pour uno onde
plane).

*Dana un co3,duit ayant au rnoin& un axe privildgi6 at danc loquol so d6place un dcoulement donc Ie
vectour vitosso eec portd par cot axe

- la vitesso do propagation do l'dnergie eut colin~airo au vecteur vitesso e.- l'dcouloment ct
vitesse do transport- de l'dnorgio vitosso do gr'~ye

- Ia vitesso do groupe est uno vitasee au "sons do Is mdcanique" ot, on partir j.ior

vitesso de groupe vitosse do Ilcoultaont + vitesse de groupe

(dans le replro fVxo) (vitesso dlentrainement) ( dons le ropbre mobile)

Do ce fait, unt onde do vitesse do groupe nulle dans 1e repbre mobile Kz. --K/t4. ost vue so
dplaant, port4o par 11culmn Vf , pae un obsorvatour situd dana le ropbro fixe, et
l'emplitude do cotto onde ddcrolt coimme exp ( )',O- 2. )

F~n gdndral (sauf pour des ondes planes ot dana 1e champ lointauin)

a dcnsit Cla densitd
oanrgEet diffdrenito de-norgin.3

c Indiu de potentielo

11l'nergie cindtiqu l'dnergie potorntielle

ayonno sur I a moyenno our la
3 urioaoce do is section rurfaco Jo la section
ciroite du conduit droite du conduit



6.3 - Courbes do dispersion

Sauf dans Ic cas de l1dcoulcmenL sonique, b uno frdquence donnda (ou Zk Kmo fixd) correspondent deux 5

modes, puisqie la relat
4
.on do dispersion est un polyn~me du second degrA en ( , (nombre d'onde) et K, (o

(irdquence). Nous noterono o' t 45' (ou %'~ et Y, cI~acun de ces deux modes ddfinis par chaque
valcur de la solution de (29a").

*En L'absence d'dcbulemenL k& chaqu e va leur do K. o- .o K J0X1 I& courbe de dispersion eat
symdtrique par rapport a '.'axe Jes (1(0.)

*En prdsence d'un dcoulemeni subsonique 00: supersonique, pour chaque valeur do Kos:

* o)> 0n 3 ,jo, ~ 0 seulement pour:

Scoupure on rdgime subsonique, et

0en rdgime supersonique.

,t at'o &),I soni des fon~tions croissantes do Ko, (de Isa frdquenco)

par contra

lorsque la frdquenco (ou Ko) croti

pour vi -: w, dons va dcou:Iement subsonique ; ci, 's = -pcu gO dn
on dcoulornent suporsonique). 0

*En particulier, Is long d'one mtme !brsachc de la courbe do dispersion

> )q

Lauu dsoso et. rlaAi dns de dispbersiet parr .'cculee o'srde ons iddrebr a S, eixiqu

quo, pour one frdqtience donnde, lea longueurs d'undes do chacon des deux nodes diffdrent. Toot so passe
c osase si l'Ccoulecoent dilatait l longuour -'.1onde du mode et contractait cello du mode ~'.En
parisculier, pour 0 ! M .J L I a I frdquence do coupuro : ' A- c%>o

Cola amcno a donner tLne image repr~sentative do la ddfinition des modes. Consid6rons un voilier, ou
un agour:

*Is vitesse do phase est portdc par le vecreur qui passe par l'axe du v'oilier (ou du nageur) et eat
orientedo deo Ia peupe vera l~a prooc (des pieds vers la itot)

Isl vitoase do groupe eat porile ct orientde suivani la direction rdelc C'u ddplacewoont, du voilier ou
du nagour.

Ainsi ddfinies, Isa vitesso de phase o L t l~a vitesse do groupo U soot observdes du rivage par

tin obsorvatour placd dons Ie re C', fixe qui, do plus, con,.it, dons ce repbre, Is direction ct Ia force
du ',ent ou du courai notdos et c d6finist3ant la direcion positive.

On a alora lea allures cc situations soivanieo

VENT A'.ZRIERE!

baigneur nageant dons ie
sons du couran~t>

Grand largu (tribord) T 1,o Mode aval :existe quelle quo soit
ou gu laior)I valcur do 14.

baibneur nageant do biais doans
le sens do .zouranc __________ ______________________

(b6ord ) -
au plus prt~s (trib.)rd) ,tares y .o

baigneur nagoant do biais b 4
coritre-couraut Mode amont existe soulement pour

Baignour nageani a e V~P '

canire-courant _________ __________

VENT DEBOUT ! 7'V o Md mn res xseoau

baigneur nageani A contre-
courant .. Ia 'ceis V oeaotivre eit osu

bagerou
bagernalf nageani de biais

A conire-courant !!__________

one ondo telle quo . no pe~t recent or uc dcou~ueoent
sonique ou supersonique.
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Dispersion
curve
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/ \ Upstream (vg < 0)

/ ' Forbidden zone

/ / - non propagatve waves

Ay,. 3 -Disoersion curve of sn acoust~c mode in the aew- of PLw
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tP Drcdontem modeAf

2 _________g

22

______ _ Aa Inverse upstream

eDirect downstream
- mode

iverse upstream\ k- a
0 e 0

M+

Direct downstream
mode_________

2_ _ Dir ect downstream
modet

-N T
Inverse u~pstream mode Inverse upstream mode

Fig 8 - Variations of i and Mrg for 1,,=1

*z

Downstream mode K
Dwn~t1em mod

Fig.9 - isprsio cuie fr 1

C/ '01



Dontemmode
D~ownistream

-- Inverse upstream mode mode
WM0+l downstream mode

-I ii -IL
downstream mode \ /'A" 0

Inverse upstreomA /

4-

'Downstream mode M-

Mo 2 - Downstream mode

Al~M '-,<I~nverse upstream macde
Mo-Idownitreoti mode

0 1downstream mode 9~

-!-jInverse upstream mode 0

F19. 70- Variations ofM' an 4 for M,>1

Fig 12 Ir-dRnctnsgunar recianguoar duuct
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Pxo'

K97

Fig. 16 - Variatio, of the solution Pmm for M. 0

o t41 .X, ' %~ 2 A,,3  1e;3 X. 41 T, a

n ' i1 q!I3 

0)1 
X

-X~I -- <0

Fig 17 - Graphical solution of the limit condition for Mo< 1.
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PROPAGATION IN ACOUSTICALLY ABSORBENT MATERIALS

M. Perulli, DMpartement de Ggnie Mcanique, Universit6 de Technologic de Ccmpibgne,
Compi~gne, France 7-

and

P.E. Doak, Institute of Sound and Vibration Research, The University, Southampton, England

Models for representing the dynamics of porous and other acoustically absorbent materials are
reviewed. A relativelv detailed diicussion is presented of propagation in significantly
absorbent materials widely used in practice, or commonly occurring, for example, as outdoor
ground surfaces. The principles governing design of compczite materials for high acoustic
absorption are presented. Non-linear high amplitude effects and mean flow effects are briefly
described.

It is rare to find in nature, and difficult to design and synthesize "art'fixally", a material, com-
posite or otherwise, in which stress wavej, including sound, are lapidly attenuated when they travel in it.
For example, a suitabl and suitably loaded rubber material may be extremely effective as a low frequency
vibration isolator b-t yet transmit higher frequency stress waves with pract' :ally no .-tenuation (i.e.,
no loss of energy).

As Lord Rayleigh observed, however, a few natural materials, such as 'a well-compacted haystack", can
attenuate acoustic waves effectively, providing enough viscous and thermal dissipative retarding forces to
reduce the pressure amplitude of an acouscic weve travelling through the air in the haystack "poes" by as
much as a factor of 1/6 or so over a distance of travel of the order of a wavelength in the material. In
contrast, the viscority and thermal conductivity of more common sub'tances such as atmospheric air, water,
steel, concrete, etc., is sufficient to produce amplitude reductions of comparable order only over travel
distances of hundreds of thousands uf wavelengths, or more. Dry, or dryisn, ground, on the other hand,
is often porous enough to act as a reasonably good sound absorber.

In a general formal sense, whatever the mechanism ultimately responsible for the losses in an acoustic
continuum, the effects on the acoustic propagation of a wave with simple harmonic time dependence can be
expressed through appropriate, complex, effective, mass density and speed of sound parameters, both in
general functions of frequency, and in turn one may equivalently use a complex characteristic impedance
(Pc) and "propagation constpnt", or wavenumber (k = w/c). With these equivalent complex parameters,
mathematical forms like e

" Kx 
and p , scu remain the same as for a lossless medium, but of course bot real

and imaginary parts of k and Pc must be taken into account when interpreting formal results in order to
obtain numbers applicable to practical problems.

A relatively simple model for sound propagation in a porous material can be dnvised - the original
development of this rodel was accomplished by Lord Rayleigh (Theory of Sound, Volure 2, pp. 328-333).
Thrs model is sufficiently accurate to indicate the main features distingunshrng such propagation and to
provide a guide fcr designing the structure of "man-made" materials - such as fibreglass, mineral :ool,
expanded plastic foams, sintered metals, etc. - in such a way teat they will have useful, and reasonably
predictable, sound attenuating properties.

One proceeds as follows (see, e.g., the treatment in Porse and Ingard's book Theoretical Acoustics,
pp. 252-256, Z69-270, 303, 428, 569-571, but note the ex,,lanations in what tollown here of the physical
interpretations of Morse and Ingard's "mean velocity" and "effective density p "). The development of
the model is easier to visualize if one considers first the one-dimensional caPe Generalizati;n to three
dimensions is then straightforward, requiring only conceptual re-interpretation of the parametcrs.

The porous material can be thought of, one dimensionally, as a solid rigid material in which are bored
a number of parallel holes, each of ares of cre-. section S , say. The porosity, Il, of the material
(percentage volume of the pores) then cam be defined as nS , wierc n 3e the number of holes per unit area
of cross-section (in a plane perpendicular to the directio of the holes, of course), or es S IS, where S
is the area of cross-sectron per hole.

An equivalent particle velocity, u', regarded as possessed by the whole region occupied by the porous
material, that provides the same mass flow locally as the actual velocity, v', in the pores may then be
defined by Su' = S v', or u' = v'%l. Then, in terms of u', the equation of conservation of mass, which is
in terms of v' simply, as usual,

30' 3v'-4 I a 0,
t 0 X

(primes indicate the acoustic fluctuating parts of the designated quantities), becomes, upon multiplication
by ,

t au'll*'~ fp 0 , (1)

since of course R is a constant.

The normal adiabatic relationship between pressure flu'ct.ations and mass density fluctuations may not
apply for the iiaterial in the l.ores. First, if the pores are very small and the skeletal material is a
relatively good heat conductor, there may be time even within the relatively small period of an acoustic
oscillation for the normally adiabatic temperature fluctiuations associated with the cyclic compression snd-- )
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rarcfaction to be conducted away into the skeleton. This has the effect, in the limit, of making the pro-
cess of compression and rarefaction isothermal instead of adiabatic: in other words, for a fluid, the7- -- ratic of specific heats, y, in the expression for the speed of sound, Y-, . reduces "rom its adiabatic
value (1.4 for ait, e.g.) to unity. In terms of the compressibility of the material, K = (1/p)(ap/ap),
this means that the effective compressibility of the material in the pores, K , may lie between its high-
frequency, large-pore adiabatic value K as a lower limit and its low-frequen y, small-pore isothermal value KT
as an upper limit. Pore sizes and frequency ranges for many porous materials are such that the transition
may occur from one value to another within the frequency range of interest and hance, for simple harmonic
acoustic fluctuations, K strictly should be regarded as a function of frequancy (for transients, of course,
this implies that .p should be replaced by an appropriate operator involving a/at).

Thus the usual adiabatic relationship between mass density and pressure,

01 KS p, or p' - P'/C2  = P'/(Yp/p), (2)

must be replaced by

P' - P K P', (3)

it being understood that K may be a possibly slowly varying but nonetheless significant function of frequency,
(or for transients an operAtor in a/at). Whatever the variation in K , however, it will not normally vary
between largo limits: again, for air, the limits would be proportiona? to those of 1/y from adiabatic to
isothermal conditions i.e., 1/1.4 to 1.

Insertion of expression (3) into equation (1) gives the conservation of mass relationship between the
pre'ssure fluctuations and the effective velocity:

1b ap,/at + au,/ax - 0. (4)p
Generalization of equation (4) to three dimensions is straightforward. With a interpreted as the perctntage
of total volume occupied by open, interconnecting pores and au'/ax becoming the divergence of the vector
effective velocity, one has

fp.3 t + div A' - 0. (4a)

An expression for conservation of linear momentum can be similarly constructed. First, one must
consider the effective inertial mass of the material in the pores. This may be somewhat greater than the
actual mass, for two reasons: (I) in fibrous porous materials, like fibreglass or mineral wool, some of
the fibres may move with the mdterial (fluid) in the pores; (ii) the actual, relatively small scale,
motion of the material in the pores may, according to details of the geometry, result in inertial reactions
greater than thcoe one might expect if the motion were of a quasi-steidy, incompressible flow nature.
Thus, for the effective mass density in the pores one should replace o, the actual mass density, by p , an
effective mass density, which may be up to 1.5 times as great as p, very approximately (normally it will
not be that much greater than P?. Second, if the pores are of very small effective diameters, then viscous
retarding forces will be appreciable. The flow in such small pores can be likened to Poiseuille flow, so
that, in terms of the actual velocity in the pores, v' (averaged over each pore cross-section, of course),
this retarding force can be taken to be of the form -Rv', where R is a flow resistance depending upon the
viscosity of the material in the pores, the area of crosr-section of the pores, and again, ultimately,
especially for larger pores, on the frequency. Ix. most aoplications, ho.,evez, the pore size is small, and
since the motion in the pores is then of Poiscuille type, although quasi-steady, the flow resistance R will
have its steady flow value, and thus can be determined independently of any acoustic excitation by steady
flow tests on the material.

Thus, the motion in the pores is governed by pressure forces and the assumed frictional force -Rv', and
with the effective mass density pE, the equation of conservation of linear momentum (or Newton's Law, for
the motion of the material in the pores can be written as P av'/at . -ap'/ax - Iv,. It is more convenient,
for purposes of cambining this expression with equiation (4) (to eliminate p' or u'), to express this linear
momentum equation in terms of u' - Qv': i.e., (pE/r)au,/at - -an'/3x - (R/.I)u'. The forms of the first
and third coefficients suggest, linalll', defining a new effect.ve mass density, p, and fbo: resistance, 4, as

pp = PE/Q, € - RI/. (5)

The linear momentum equation then takes the form

p au'l/3t + apl/ax + 4u' 0 o. (6)

For typical porous materials for use in air - with, of course, air the material in thelpores - the porosity,
n, may be, say, from 0.2 to 0.7, and the flow resistance 0 may be from 50 to 500 Dc m . The fin.l
"effective density" in the pores, p , being pE/El, thus may range from, say, 1.5 to S (since, it will be
recalled, p may range from P to about l.5p). Note tha' all these effective parameters usually must be
determined Ey experiment for each particular porous mater.al, and that apart from 4, the d.c. flow
resistance, the experiments must be acoustic experiments, -he determinations being accomplished by fitting
curves derived as solutions of the govorning equations (4) and (6) of tho model to experimental results.
Note also, that like equation (4) 's generalization to three dimensiong, the three-dimensional generalization
of equation (6) can be written down at once:

rp a,/at grad p' + 0 ' - 0. (6a)

The system of two equations (4) and (6) can readily be solved icr simple harmonic motion. Insertion
of the forts-

,- P , P(xle
i , u . U O xle

D ~ (71)[
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into tne equations gives

iI9p P + dL'/dx - 0, dP/dx + (0 + iMPp) - 0. (8) 7-3 4

Elimination of, say, U (by differentiating the second equation with respect to x and subtracting from it
( + it4o) times the first equation), gives the following equazion for the pressure phasor P(x):

2 2 (2
d P/dx

2 
+ 2 ipe (1 + O/Jmp)P - 0. (9)

Pp P
This can be brought into formal correspondence with the corresponding equation for acoustic pressure
propagation in a lossless medium, with (real speed of sound c), namely

d 2P/dx
2  

(W2 /c2)p - 0,

by defining a complex, effective speed of sound, ce, as

c - (1 + ±
>
) , (10)

p p

equation (9) then becoming

d 2P/dx
2 
+ (W2 /c 2)p 0 (11)

and evidently having the solutions

P A. e ,(12)
where k is the effective comlex wavepumber

ke  S (/Ce . (13)

From equations (8) it can be seen that the corresponding solutions for tne effective particle velocity
phasor, t(x), are

±ik e  ikex

e A 4 i p (14)

,,r, again with an effective complex characteristic impedance, Oece, and effective complex mass density, Pe'
defined, respectively, as 6

4+i e iuAp(l-.-6/iup) a
oc5(I iuPp)/ike =(--iL')Ce p - (..E) (14 +- - I 1

iulp)'e1(O p Kz ) (+ 4/iup SU p Op)

e ) U + (2p) (p ) + (l1 + (16)
Pe P~cc Np T-p 1

eluation (14) also can be put into formal correspon-dence with the corresponding expression for a lossless
material:

U = ± P/peC. (17)

Thus acoustic propagation through the porous material can be characterized by the two complex paraceters
(functions of mteria: properties and frequency) k and p c , just as for a lossles. materiai in %hich case
c and p c are real - the lossless material resuif now appearing as a special case of the porous, lossya e e

Loaterial. Also, just as in the lossless case the nean intensity in the -direction can he written as
I

X 2~ P)

the overb.r indicating tire averaging and the asterisk the complex conjugate, one has for the porous
material an identicdl expression

Re (PU*). (18)
x 2

As to the magnitudes of the real and imaginary parts of the complex wavenumber k and the complex
characteristic impedance p c one can first note, from equation (10), that apart from the xlicit
dependence on iw, the effective spepd of sound, c , depends on the two parameters 2/p and /XC K . These
two parameters similarly determine ka  u W/c . Finm equation (15) these same two parameters, RA o I
determine the characteristic impedance Pece. P

For greater insight and ease of estimation of probable vdlues ior these parameters, for a given porous
material, it is helpful to re-express them in somewhat different forms. In the paragraph preceding
equation (2) it wis pointed out that the effective compressibility, K , could he expected to lie between
the isothermal and adiabatic compressibilities of the actual material n the pores. Also (see equations
(2) and (3)) it Is evident that one tould ure, instead of the compressibility, an "effective ratio of
specific heats", y , defined as

Ye /p (1)

where p (as always here) is the static, amblient pressz rc of the actual imaterial in the: pores. For air, at
the isothermal limit Y. would be unity, risIng to 1.4 at the adiabatic (losslest) limit. Also (see the
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two paragraphs following equation (4a)), the effective mass density o can he expressed alternatively as
p /0, where p is tht (=ore phc.ocally realistic) actual mass density of the material in the pores, 0,

47.' tmes a factor of again from about unity to 1.4 or 1.5, to account for added inertia due to motion of some
fibres with the pore material, etc. Thes the parameter I/ W p can be rewrittnn as

/ 11F - /v c / )( /y e) - / ( e ). (20)

It can then be seen directly that, since (for air, e.g.) ye ranges from, say, 1 to 1.4 and P from P (th2
about1. ath rom pe (th

actual density of the air in the pores) to again about l.4 (or perhaps l.5p), ona has the range of
/F--7K going fros rbout c/dI4 to about 1.4c, where c- /Tp/p is the usual adiabatic sound speed of the

autuas Material in the porus. Thus the parameter l//f0 e is simply the usual sound speed of the material
ir the pores, minus or plus about 20%. 

p p

Similarly, since again pp - pE/R and 0 - R/l (see equation (5)), the parameter O/pp can be e.pressed ns

O/pp . (R/0) (/P E )  - R/O .

R is the flow resistance for the actual velocity in the pores and thus is readily estimable from Poiseuille-
type flow resistance formulas or data for capillaries, if one knows the actual mass density, ccefficient of
viscosity and approximate, representative area of cross section of the pores. From the figures quoted
following equation (6), one has a range of 4/p = R/p of from 10-300c m 1, where again c is the usual sqeed
of sound of the actual pore material. Furthepsore, 5/p = R/p of course has the dimensions of (timej"
and thus may be expressed as a characteristic radIan frequency Jinverse time constant)

4/pp . RipE  t tp. (21)

From the range just quoted, if again the pore material is air, one obtains a range of about 300 to 9 x 10"'
radians/s (i.e., about 50 to 15,00U Hz, rougrly the audio frequency range, not surprisingly) as a repre-
sentative "relaxation" frequency range for porous materials used as sound absorbers in air. Finally, one
has the third parameter, p , and as before this can be expressed as pE/n, evidently a maximum typical range
(for air in the pores) frog about 1 to Sp.

In terms of these more physical quantities, then, one has, for ke (and c.) and Pece

k ~ ' i 1 (22)
e c " (1+57/i + )

"
A 

'  
(22

e p

p c = pc ( l/ f))ye/ (I + 1,I h) , (0 3)

showing clearly the relitionship of the coplex effective quantities to the corresponding adiabatic,
lossless values of k - u/c and Pc for the actual material in the pores (y, of course, is the "specific heat
ratio" giving the usual adiabatic sound speed, /y7p, for the actual material in the pores). The factor
1/ appears in oece for the same reason that it does in v' = u'/P: i.e., to -xpress the fact that acoustic
motion actually occurring only in the pores is visualized in the model as occurring over the whole cross-
section of the porous material. The factor eY /y corrects the sound speed in the pores according to
whether it is adiabatic (large pores, high freqiency) or isothermal (small pores, low frequency). The
explicitly imaginary qzantity in expressions (22) and (23), w Aiw (it should be kept in mind that both
4 /y and t may, more generally, both depend on frequency an hence be complex; as mentioned previously,
although this frequency dependence may in fact occur, it is often weak by comparison with the explicitly
shown to /i dependence, with to approximately constant) , expresses the dissipative effect of the flow
resistaRce, and the phase Jifference that this introduces between the acceleration and the negvive pressure
gradient (see equations (6) and the one preceding it earlier in the same paragraph).

The expressions (22) and (23) for k and p c can be written explicitly in terms of real and imaginary
parts as follows (provided frequency depender're Ys only as shown explicitly):

- o To2 eio,

e  = 
e iU / kA  ,+ ( I tan 20 2-c/, (0<< ./4)

for wI / < - l, ke  kt 3 (l - iu 1w);
p e p

in general, ke - 1), K sj 47 L + + )21- sing
e ] o6 Ypel+(~w

2

1 - 2
7eCe + pc 1 7 (coso - isino)

for t/o << i, cos€ Z 1, sin 1 1g, p I/;

for u /c>> I, € * e/4, cost - sinO , I/* .

The pressure in a plane wave in the porous maturial, travelling in the +x-direction, will be of the form
iwt-ik ex i(4t-ikx x-k6 x

p(x,t) - A+e A+e

where A is a complex constant,_and the equivalent parjile velocity, u(xt), will be u(x,t) - p(x,t)/p c.
Since k+" w/c the factor e"t-kx can be written as e it then being evident that the phase

speed of the waves (speed of propagation of the wave fronts) in the porous material is cK. Similarly,
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since, for waves generally, w/c - k = 2r/A, where ) is the wavelengrn, it is cleal that the wavelength in
the porous matetial is , 2r/RK. 'hus tile entire exponential function can le written as

iwt-x2rx/Xe- (6I/) 2ex/Xe  7.5

From this it is clear that the wa-s arplitudr is decreased by a factor e 2i:
6/K 

in each wavelength of ,tvel.

For frequencies s -ell above the characteristic frequency parameter of the material, ws , it is evIQ,
that X * X/oy / , to first order in w /w, which is at most some 20% less than X, since y/y can be
expected to lie Yn the range 1-1.4. R1so 2.6/K - I' /Q, which is small compared with unitY so that the
attenuation per wavelength is small. For frequencieg to well below (4 , however, K . 6 "(1/2 (y-/y 1)w"A)
and 2T,6/K hence tends to 27, giving a sg-nificantly large factor for Rttenuation per wavelength, C
e
"2
:
.  

'The wavelength itself, X .-',n oecomes XA2(Y /y)- (wits which can be appreciably smaller than A.
Thus for the frequency range w /W > 2, he porous material caR act as an effective attenk,'ator of sound.
However, for the sound to ented the poro.s material from the surroundino tedtium, the impedances must be
reasonably matched: i.e., if the outside reqion has the same mass densitl and speed of sound as the
material in the pores of the rorous mateiaI (o and c) , then 1ac 0 Is PC. The rntic is

Pc I if [Y w 2

,in,. the porosity, 0, is always less than (or equal to) unity it is evident that the ratio can he
appreciably larger than unity if w /w is too large. Thus one often has to compromise - accept a lower
than maximum possible attenuation Ner wavelength (or per unit length) in order to achieve a reasonable
''--dance match of IPce/C '% 1. This can often be done with an tmpedance ratio of aroind 2. A noreal
irr edance ratio of thies order, of course, gives a good impedence match if the incident waves have anql,
of incidence around s/4, and thus absorption for fields with "random inicide.ce" can he reasonably effective.

In all the preceding discusaon motion in the porous material has been assumed to be confined to the
fluid in the pores, and to be of small amplitude. If tile skeletal matsrial also moves, then the situation
becomes more compli'ated: evidently the inertia, elasticity and internal damping parameters of the skeletal
material will oiso be' v: involved and so at least six material parameters (instead of the three c-
equati-as (22) and (231 '.l be needed to characterize the dynamical behaviour. Development of e
theoret'cal model fo this situation has recently been accomplished bj Zark (see the Bibliography, the
on'y factors not explicitly 3ncluded in Zarek's model are the thermal conductivities of the skeletal
material and the flcid, but extension of the mdel to include ther is straightforward) . This mode] has
the advantage of neing based on a lumped element represenitation of each "cell" of fluid and skeletal
aterial so ti.at all the local 3ynamic nechanisms are directly evident. Thi, api.roach has the further

advantage that the quantitative form of each such local nechanisn can be adjusted approprsately for eact
paxtienular material and situation, and it thius 1 I ible to tza-e the effect of such adjustmen s through

to the acousticel and/or vit'ation performance of tN' material. It is of particular significance that
this medl perris one to reau: ly evaluate the Oiffeietc in the characteristlt inpedance of the hlore-
imateria wien the excitation forc,a motion of th skeletal material as well as of the fluid in the porer,
as orcnurg, for example, when a relatively impervious emtrane is used to cover the surface of the material.
This difference can be signtfi,.ant, in some cases.

In practice, of course, co-posite constructions for accustic and v'btation absorption purpoe' often
include limp, massive membrane-,, perfoea'ed facings, relatively large scale cellular components ( ,rsnq
as L.',Mholtz resonators, for exa-ple), etc., as well as porou tetials. Analysis of the perfon inco of
such composite acoustic cransr.ssion networks can h dccompl by the %ell known lumped element and
acoust-cal/mechanical wave 0:'i'ie techniques. 1n) this connec. i,, "ino the poInt in often overlooked in
standard texts, it is worth mentioning thaf the one-dimensiundl s]ecific azoustic impedance ratio of CT
element of an acoustic rediu of length P, ter-irated in ant irpedanc ratio r,, iF Chcained by reqnrdinq
it is either a "T-eCetLion" oi a 'S-section' element, in parallel with thr tirvnal irpedance. For the
T-section,

rik 4

and fcn -he S-section,

ll k9 k I / ikl "

r. both a,es, of oeur- , rite formulas are vali" only when ki R I. Thus the element n 'tlal O.n-e<. -c
both ',titf.',es cnd inertia, lut behdves p.-lawi ly li , .,tilfness ned rigidly teIninateoi t and

ke a tr when I'shor Osicustect" l
'  

0) . These foine, 'S ire vall , fot lossy acou'tic ted, like

ort~us m <, salt) , whe e' k is com'lex, as well as fot lo sless 'aters,Is where k in i eal. +r ' z I,;
ccn)Flex, ot inst, each mass-like element, iti, and eaclh stiffncts-lik eletrnt, I/ik,. h'a, iel ,at
repr s nt dislpation as well a' an smlq.agiyf reactive. p;an!

,Oher a porous mterial, (,I perforate, is cxposed to intcnsc ,coust,c fields, or to flows exthut
parillel or normal to I* surf~ce, the pustlcle velocities In te pores, or apertures, cdn hecm(
aubstantiaf enough to ti sult in vortes shedding or "",,' urfif ent flow in the fluidl of the mterial.

Breaclown ol the flat sn "hc pores, or apcrt,.re. into some kind of turbulence de:), ic (ril azly on toe
Peynolds number b-sed on j, re oi aperture -aut cer and the actual fluid velocl' I there. It th,s can
oet.ui ew-i At relatively moderate external sound pressure amplitudes for p, riolates w ith spertiten et t'e

order of rlilli.,trec 'n diameter, but oil/ at very hgh sound Inten-tic" for micropooss ,,ateriale.
Whei h flucti. Ine, acoustic partic - velocity amp itudeb in the pores ci aertures are lai e the effect
Is o. os intioduci~ni a' Vtlltt amplstude d,'pcnocnce of the 'low resis'ance 4 (or Pt, which applosi-

-atoly a lined one, so t. , larce increase* in th~e resistance occur as the Veynolds nussoer increases.
Tlh p blI a ion of 1-lco7,g ,see the hiblicr phy) summariZes the iost i.portant work to date ,,n this
acousti' - .neatit Jualt tvely, the v,'lu, of to be used rema ins that which would be obtained byS

t a
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steady flow tests on the material at comparable flow speeds.

The situation with respect to large amplitude and mean flow effects on the reactive impedance of an
aperture# or pore, is not at all well understood. There is a general tendency for the no-flow attached

mass ("end-correction") of an orifice to be "blown away", as it were, so that the orifice's mass reactance
can be somewhat less than in the no-flow, small amplitude, case, but no satisfactory quantitative formulas
are yet available.

At very high intensities, in porous materials of good acoustic absorption, the rate of conversion of

acoustic energy into heat can be sufficient to produce high temperatures inside the material, especially
if its skeleton is not a good thermal conductor and is not provided with a heat sink Into which the heat
energy can flow. Thus in foam materials, and resin bonded glass or mineral fibre materials, charring or
combustion can occur inside the material. In air this may happen at sound pressure levels around 150 dB
or higher, and hence use of metal fibre porous materials can be necessary.
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AC(,vSTIC ENIERG

C,L. Aor fey
Institute of sound and Vibration Researc"

University o, Soutbamptun, Lgland

SUMiARlY

Acoustic energy equations are snown te be a consequence of the linearized equations of motion. Defini-
Lions of acoustic eneigy density and flux aie givcn for sound fields in fluids at rest, and in various
types of ruan flow. Sevecal applicitions to flow-acoustic problems are discussed, involvinlg the Lrans-

ssion of sound through Jets and shear layers and along lined flow ducts.

I. INTROI)UCIION

Acoasti,. energy definitions are developed in these notes from the linear'zed eqaat.ons of fluid motion,
following the general arproaLh get out in reference [1]. The balance of acoustic cnergy in the absence
of mean ftow is consideied first (section 2); in particular, nonlinear and dissipative effects are
demonstrated by writing the acoustic energy equation in spectral fo-n. Subsequent sections arc concerned
with aco,stLc energy conservation - or otheiwise - in the presence of mean flow.

The discussion in section 3 is based on the definitions of acoustic energy density and energy flux given
by Cantrell and Hart [21. In irrotatonal. flows with no entropy jradients, a gener.lized energy con-
servation law is obtained, which reducco to that of Illokhintsev [3J in the geometric (o U!LiCS approxi-
mation. Alternative energy definitions are also possible which lead to more or less general conservation
laws [4,5,6 ]; that of Mdhiing ',] is particularly useful as it provides .. simple method of accoanring
for shear layers when these ale acoustically thin. This ann various other pfoblems are discussed in
section 4 in order to illustiate the application of acoustic energy principles to flow acoustics.

2. ACOSSTC LNaRGY IN Till. ABSUNCh OF FLOW

Oscillating motion of an ideal fluid generally imllies a mean transport of energy, as the following argu-
mient shows. Considei a material surface S in an inoscid, nonconducting fluid and let p, I be the
pressure and iluid velocity associated with a given fluid element on S. rite local energ) fux crossing
S is py; the inic average of this quantity, following the same fluid clement at all times, is

I . ' (1)

Here primes denote depaitores Irom the Lagrangian average . 1 , and we have assumed that tile motion of
each particle is puiely oscillatont so that cv. the ivcrae velocity of a particle oh fluid, is

Ili what followr we shall use local (rather than I agrandian) tine averages, denoted by . Perturbations
(denoted by prises) will be described by the linearized equations of motion, since we arc aiming only for
second-orde- accuiacy i- equations such as (I) above. !quation (1) givs the mean energy flux correct to
secord order (undei the ondltlions stated above) whether the surface - is fised ot 'seve0 with the
iluid, and whether exa, ,si first-rdcr valu, of p', v' are used.

2.1 hleal medium It rest I inearised theor

,:C show In this sectlsso how an ocoutas, evntrg balance equation fsillws fr- (ith lneariseed equations oI
fluid motion. an ideal iluid iritially at rest, these may be UiLt(n as

-L -L' dii v', (2)

2 , t o( )

. . (3)

',L( t hat' lay vary witl po it ion, tie undisturbcd den it, vcd not b), unifor,.. 11ultilyling (2) lIv
5,a1 addiln, ° ' .(3' gilv,

, o''2 1" L, 'v
' 

t -div(p'v'). (4)

I qua iton (4) 1s ,sn , .,. , i thel general Io's

I/ t y 1v . (5)

il hiu (h l rcpt(bent tilt ololuSt c knlig, deisyLJ i11d N tlk.1 ,1otiu t slxsly Luy. [t the present

ase we51 havc

(j), 2I ,, ,, , 'v' 16)



which are the standard definitions for an acoustic medium at rest. Note that both E and are
second-order quantities; the energy balance is iccurate to second order, although based on irst-

.A order equations.

Equation (5) is often used in the time-averaged form

+ di,, 0, (7)

where D - E and - are short-term averages of the energy density and flux. Also usefu) is the
spectral energy equation

(alat)D(w) + div Z(W) = 0, (8)

obtained by first Fourier transforming cq.3tions (2) and (3) over an appropriate time interval. The
spectral quantities D(w) and (W) are rc!ated to the power spectra of p' and v' over the corcs-
ponding interval by

D(w) - 1 2 Sp(W) + lpoS(W) (Si - cross spectral density of v.', v.); (9)

2oeo

i.(w) C pi(w) (Cpi - co-spectral density of p', vi'). (10)

2.2 Nonlinear effects

Inclusion of nonlinear terms in the preceding model leads to a spectral transfer term in the acoustic
energy equation. We start from Westervelt's virtual source equation [7] for acoustic disturbances in an
ideal uniform fluid at rest:

-L 2 4 21
co  at poC o  t

2

This allows for nonlinear effects up to second order. The ronlinearity coefficient B is a property of
the fluid, equal to J(y + 1) for a perfect gas.

The Fourier transform of equation (11), taken over a suitable time inteival, gives

(/co)2p +Vp - (w2l/poco4)q (12)

where we define 

__"

L.L p(t)exp(-it)dt ,and similarly for 4). (13)

We multiply equation (12) by the complex conjugate p* and take the imaginary part of the result to
obtain

dv - - Im(j* ), (14)d~v c~p*) - 2 4

P c0

where the velocity has been introduced through the momentum equation

vj - -i=0 . (15)

Finally, taking averages of both sides gives the following nonlinear spectral equation for stationaty

sound fields:

div I(w) -- -___=
2'4 q(C) (Qp) quad-spectral density of p, q). (16)

0 cpq

This equation has been used by Westervelt [8] and Merklinger [9] Lo describe the spectral transfer of

energy which accompanies high-intensity sound pIopagation.

2.3 Dissipative effects

A spectral energy equation for real fluids may be obtained by starting from the Helmholtz equation for
linear waves in a uniform medium at rest. Thus we write

V2- +2 =0 (17)

where K(w) is a complex propagation constant.

Multiplying by p* and proceeding as in section 2.2 gives the following result for stationary sound

fields ir. weakly-dissipative media:

In a slightly different form, appropriate for periodic signals.
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div k(w) - - S (W) (-m K a << w/eo). (16)
00

The intensity in equation (18) is based on the acoustic velocity perturbation ' defined by

3'/at - -(l/po)Vp', (19)

rather than on the actual fluid velocity v'. The difference is generally negligible except near solid
boundaries.

In the radiation field at large distances (r) from a sound source, ;/Dr 5/pc and equation (18)
reduces to the well-known result

(r2 S) -2ar 2, (20)

7 2
which shows the combined effects of spreading and linear attenuation on the propagation of time-
stationary signals.

3. ACOUSTIC ENERGY IN NON-UNIFORM FLOWS

The conservation property of acoustic energy is extended to small-amplitude disturbances in irrotational
uniform-entropy flow, by modifying the definitions of E and in equation (5). The presence of
vorticity is shown to lead to sources (or sinks) of acoustic energy, except in the short-wavelength
(geometric acoustics) limit where the conservation property holds for arbitrary flows.

3.1 Irrotational uniform-entropy flo-

In the absence of vorticity or entropy gradients, the linearized equations of motion may be writte, as

WM - -div T' (T - q), (21)

3 *'/;t -Vil' ( - h + JV12), (22)

where h is the specific enthalpy of the fluid. lultiplying (21) by It' and adding r''.(22) gives

l'3s'/Ut + r'.3v'/t + div(l['T') 0 0. (23)

But
' =Pov + ' (V - undisturbed or mean velocity) (24)

and since the fluid is assumed ideal,

' P'/co2; h' = P'/P. (25)

With these substitutions, equation (23) takes tile form (5), the generalized energy density and energy
flux arc given by

2 o, .1 (P v ) (26)

2o c 2 o 1 2 '
0 0 0

and N- 11'' = ( p + V.v') (p°v' + Vp'). (27)

0
Generalized versions cf the spectral quantities DML) and I.c) may be written down immediately by
analogy with section 2.1. Equations (26) and (27) are the Aefcnstions proposed by Cantrell and Hart
[2 .

3.2 Energy sources in general flows

The momentum equation for arbitrary flow of an ideal fluid is

lat - -VlI+ TVs + , (28)

where T and s are the temperature and specific entropy of the fluid and is the vorticity
(V - v). Use of the linearized version of (28) in place of (22) leads to the result

DE/t + div P; (P 0 0). (29)

In oher words, acoustic energy sources (or sinks) appear in flows containing vorticity (I) or entropy
gradients LVs), when E and - are defined as in section 3.1; details of the analysis are given by
Goldstein LO; see eqn. 1.87]. Nor is the conservation property recovered by redefining E and in
terms of the irrotational part of the velocity perturbation, although the expression for P .ssfferent £I].
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We conclude that the Cantrell and Hart definitions of acoustic energy density and flux are useful (i.e.,
yield a conservation law) only for flows of the type described in section 3.1. In tile general case,
Mghring [4] has shown that generalized versions of E and may be defined so as to yield acoustic
energy consecvstion ia any linearly-perturbed flow of an ideal fluid; but the generalized E and N
values involve auxiliary potentials, which are not, explicitly related to the local pressure and

velocity perturbations.

3.3 Energy soarces in flows of uniform entropy

In the special case where Vs is zero, the linearized version of equation (28) becomes

a . -VI + %' - ).(30)

Using equation (30) in place of (22) then g.ves

P - (31)

for the rate of acoustic energy production per unit volume.

This result offers the prospect of identifying sources of aerodynamic sound in flows with vorticity,

since is zero outside the region of rotational flow. A note of caution is appropriate, however:
foi the integral over the flow region of P (or its average value P) may be almost zero as a result
of cancellation between positive and negative regions. Physically, P represents a local transfer
of enerty from the mean flow to the unsteady disturbance; the flow as a whole exhibits energy conser-
vation.

The expressioL -.r P given above may be written in several different forms, all of which are equivalent
to second order*; for example,

P 2 v.( a ') - o x ') (32)

where denotes the ratio /o. The last expression above is the one given by Goldstein.

3.4 Geometric acoustics

Although tnt definitions of E and introduced above imply a non-vanishing production term (P)
for general flows, the value of P tends to zero for sound propagation in an ideal fluid in tl.e short-
wavelength limit. The one modification required to equaLions (26) and (27) is the replacement of v'

by the acoustic velocity perturbation , defined by equation (19) In a frame of reference moving with
the local mean velocity. Thus the components of u' are

un  P'/Pcco, ut , O, (33)

normal and tangential to the local wavefront surfaces.

Mhen t ese values are substituted in equations (26) and (27), we obtain the definitions of E and N
given by Bleshintsev [3. In time-averaged form,

V
D I n V<,2>

D-- (I + -)p,> (V component of V normal to wavefront) (34)

Poeo

and V(ad + 1 .2 ). (35)

o Po00.

Note that these definitions are special to the geometric acoustics situation (quasi-plane wave propaga-
tion), and cannot be applied to more general sound fields.

4. APPLICATIONS OF ACOUSTIC ENERGY

In this section we demonstrate some applicacions of acoustic energy principles to flow acoustics.

4.1 High-frequency sound transmission through a cylindrical shear layer

Figure 1 shows a cylindrical shear layer between a jet and the surrounding flow. The energy conserva-
tion law of geometric acoustics will be used to relate the external sound field (region 2) to the
incident sound field in the jet flow (region 1). Spreading of the shear layer is neglected; the

wavenormal angles (01, 02) are therefore related by

An exception is discussed in section 4.3.

Note that m.l - 0 identically.

* P.E. Doak, unpublished research memorandum, Lockheed-Georgia Co. (1975).
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Cos 01 u1 Co o- -0-2 2' U2) uz2. i " 2.

which e.:presses the fact that the oxial phase
speeds are equal in regions 1 and 2. _

The sound power incident on the shear layer in

region I is characterized by its distribution,
11(cos 01), with respect to cos 01; this distri-
bution is assumed to be known. Conservation of
energy across the shear layer gives the power
distribution in region (2) as

W(cos 02) - W(Cos d(cos 0 ) (37)

W(cos cI D2 )2 F
T
GURE 1. High-frequency sound transmission

01 2 -) through a cylindrical sheac layer
separating two regions of uniform
flaw.

the last line follows from (36), where DI od

D are defined 
by

U. x-

(I = (1 + Co ens 0 (i 1 1 or 2). (38)
i .

In order to relat.. the power distribution W(cos 02) to the far-field mean square pressure in region
2, we note that equation (35) gives the intensity normal to a wavefront as

2 <p2 > 2>( -- 722 . (39)

0 C OCO

ihus the power radiated in the conical sector (02, 0? + do 2) is

<P'2 2> 0. 1 2 .2,R 2 2d(cos 02) = W(cos 02)d(cos 02), (40)
o2c2 D22

where < > denotes the azimuthal average about the jet axis and R is the wavefront radius in
region 2. 'The required result then follows from equations (40) and ?37):

R2<p22> D' l-2 W(Cos 61]o (41)>

Equation (41) shows how the mean square pressure radiated at any angle 02 depends on thL external
flow., With the aid of a further assumption - that the field inside the jet is effectively radiated
from a point - we may relate the mean square pressures inside and outside the jet by writing

W(cos 01) , 1 2 (42)

(compare equation (40) above). Mhen equation (42) is used it, (41) we obtain
R22<p2' R1

2
<p1 '2,€ .c 224 (43)

2 P2l1I
4  

*

This last result was used in reference [11] to derive an acoustic correction factor for open-jet flight

simulation facilities.

4.2 Energy flux discontinuity across a vortex sheet

The definitior. of in section 3.1 implies a discontinuity in the energy flux component normal to a
vortex sheet. The value of the discontinuity is calculated below; the implications for sound power in
flow ducts are discussed in section 4.3.

The vortex sheet sketched in 7igure 2 separates two uniform parallel flows of velocity U1  and L
Superimposed on the basic flow is a small-amplitude disturance, with velocity components (u', v') in
the (x, y) directions. From equation (27), the y-component energy flux in either region is

N p'v' + oUu'v' . (44)

The corresponding angle 01 is assumed to be real; this limits the application of equation (41) to
angles outside the cone of silence.

• ' - I I I i |i - - i i I ,S



The physichl origin of the energy loss may be understood by evaluating the energy flux expiession (27)
in the low-frequency limit: at the duct exit, where p + 0, this gives

Ux Uu'.Pu'. (51)

Thus the axial flux of acoustic energy is dominated by the convection of kinetic energy perturbations,
which are swept downstream in tiie subsonic exhaust flow without radiating significant energy to the far
field.

A theoretical model of the transmission process has been studied by Munt
t
, in which the jet shear layer

is modelled by a cylindrical vortex sheet attached to the lip of a semi-infinite thin-walled pipe.
Despite the idealized representation of the shear layer, which in the experiments was turbulent and of
finite thickness, the model predicts values for the plane-wave reflection coefficient (R ) and the power
transmission coefficient

arad - Wrad/Winc  (Wrad - power radiated in far field) (52)

which agree well with the various available experiments. In particulai the model predicts

rad 1 - -- -) (M - Mach number of flow in pipe); (53)

i.e. an acoustic energy loss in the transmission process. It is interesting to note, however, that

a is predicted to remain within 1 dB 3i its zero-flow value at all frequencies, provided
d

< 0.5.

4.5 Sound power radiation from a duct inlet

At a duct inlet, the flow remains irrotational (except for • thin boundary layer) provided the inlet is
suitably shaped so as to avoid separation. It follows that conservation of acoustic energy may be
expected for high Reynolds number inlet flows.

A further consequence of the irrotational flow is that at low frequenci. d is predicted to be un-
affected by the mean flow into the duct, at least at low Mach numbers. follows from the plane-
wave relation

a 1 - IR 1
2  

(Re = velocity-potential reflection coefficient), (54)

together ... the prediction from Taylor's acoustic transformation [15] that R is unaltered by the
inlet flow to first order in M. However, these theoretical predictions have got as yet beet, tested
experimentally.
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ABSORPTION OF SOUND WAVES INI T;,E ATIIOSPHERE
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SUMIARY

AbSorption processes for sound waves in gases are described, with particular emphasis on
atmospheric propagation over the frequency range 10-10s liz. The topics covered include
molecular transport processes (viscosity, heat conduction and diffusion in mixtures);
rotational relaxation in air; 'vibrational relaxation of N, and 02 riolecules in air and the
influence of humidity; radiative heat transfer due to wat r vapour; viscothermal absorption
due to suspended particles, and the additional effec~s arising from droplet evaporation in
fogs. In each case, graphs or formulae for estimating atmospheric attenuation are provided,
together with references to further information. The survey concludes with a brief intro-
duction to dissipative effects in nonlinear waves; sonic boom rise times in the atmosphere
are discussed, together with the spectral distortion of high-intensity noise.

1. INTRODUCTION

The propagation of small-amplitude sound waves in a uniform stationary atmosphere is closely des-

cribed by

(V
2 
+ K

2
)p 0 O, (1)

where K(w) is a complex propagation constant for single-frequency waves (time factor eiwt). The approxi-
mation is good for frequencies well below the relaxation frequencies of the principal energy-containing
molecular degrees of freedom (the rotational and translational modes). For air, this restricts the
frequency to

f << frot 0.04 c
2
/v GHZ (15, I atm)t; (2)

the acoustic wavelength at fro (the rotational relaxation frequency) is only about 10 times the molecular
mean free path, so the Navier-Stokes equ ;ons cease to be valid when condition (2) is not met [1,2,3].

Equation (1) implies that the pressure in a plane progressive wave is proportional to

e-
i Yx 

= exp[- (a + iw/c )x] (x = coordinate in propagation direction). (3)

Hare a is the attenuation coefficient and c is the phase speed; dispersive propagation occurs when c
di ffers from cn, the equilibrium sound spee8. At low frequencies K approaches w/co; moreover, throuihout
the frequency ange for which (1) is valid we have [1]

I I I «1 (a,a positive). (4)
c0 0 C C < 0

In the notes which fo1li,, attention is focussed on the attenuation coefficient a rather than a.
This is because for many practical purposes it is the spectral energy distribution of the received signal
which is important, rather than the actual waveform. According to linear theory, a has no influence on
the energy distribution, since it merely alters the relative phasing of different frequency components.
However, during high-amplitude propagation over large distances (e.g. aircraft jet noise and sonic boom),
dispersive effects assume practical significance; this subject islriefly covered in section 6.

The attenuation of sound in uniform atmospheric air is plotted versus frequency in Figure 1, at 20°C
and I atm pressure [4]. It is inimediately apparent that the relative humidity (RH, .) is an important
parameter. The relative humidity and the water vapour molecule ratio (h, %) are related by

h = (percentage of )120 molecules in mixture) - (RH).(ps/pO), (5)

where ps is the saturated water vapour pressure and pO is the atmospheric pressure.

The various absorption mechanisms contributing to Figure I are discussed in sections 2 and 3. Two
additional mechanisms not included in Figure I are radiative heat transfer and particulate attenuation;
these are assessed in section 4 and section 5 (with particular reference to fog). Finally, nonlinear
effects are introduced in section 6.

Numerical values in this chapter refer to a temperature of 150 C and pressure of I atm as standard,
unless otherwise specified.
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FIGURE 1. Absorption of sound in air (1 atm, 200C) as a function of
frequency and relative humidity: values calculated by
Evans, Bass and Sutherland L4]. Classical absorption is
shown by the broken line.

2. CLASSICAL AND ROTATIONAL ABSORPTION

In a gas mixture such as the atmosphere, molecular transport processes (shear viscosity, heat conduction
and species diffusion) give rise to the so-called classical absorption coefficient [1,5,6,7j,

1 . 2v4 y- 1 C(1- C l2a % 2 o3 7}.-_7 - (6)

The first two terms represent viscous aad heat conduction effects respectively; the diffusion term is
calculated for a two-component mixture model, with molecular weights (MI1,M2). Other quantities in
equation (6) are defined as follows:

C, (I-C) mass fractions of species I and 2 in gas mixture
Pr Prandtl number v/K (K = thermal diffusivity)

Sc Schmidt number v/012 (D12 = species diffusivity)

y specific-heat ratio of mixture
V kinematic viscosity of mixture.

The largest contribution to cc in air (about 70%) comes from the viscous term. The heat conduction
term accounts for rost of the remafder. The diffusion term contributes only about Y.5% to the classical
absorption in air; the principal components involved are oxygen, nitrogen and argon.

Measurements of a at high frequencies (well above the vibrational relaxation frequencies discussed in
the next section) show the correct fP dependence, but yield values of t about 31% greater than equation (6)
pr-dicts (compare Figure 1). The discrepancy is attributed to rotational relaxation of N and 0..
molecules,wich may oe modelled as a bulk viscosity in the frequency range allowed by (2) bove. 2 An
empirical formula due to Sutherland [8] predicts the total (classical plus rotational) absorption as

a(CR) = 0.159 g(T).F 2/P dB/km (at frequency F kHz).* (7)

tA further cootribution due to water vapour becomes comparable in hot humid air, but for air tempera-
tures less than 40 C its effect on the total classical plus rotational absorption remains sall (see remarks
on equation 17) below).

*Values of a (in dB/k,) are related to a (in neper/m) by a 8686a.
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Equation (7) refers to dry air, at a temperature T(K) and pressure P(atm). The presence of water
vapour in significant concentrations alters the viscosity and renders the formula inaccurate, but the
ercor is less than 3% for temperatures below 20 C. The temperature correction factor g(T) equals 1 at -..
15 C, and is given by

g()= 1. 383 T 1

g(T) 1+ T (270 < T < 320 K; see [9] for higher temperatures). (8)

Figure I shows that the classical plus rotational absorption is typicaily of secondary importance in
humid air over most of the audio frequency range, although it becomes dominant at ultrasonic frequencier.
The additional absorption shown in Figure 1 arises from vibrational relaxation processes, as described in
the following section.

3. VIBRATIONAL RELAXATION ABSORPTION

In air at equilibrium, a small but finite fraction of the internal energy resides in vibrational
modes of the 02, N and COg molecules. Rapid changes of pressure - as in a sound wave - cause departures
from equilibrium, gecause f the relatively slow response of these vibrational modes to changes in trans-
lational and rotation.l energy of the molecules. The rate of approach to the equilibrium energy dis-
tribution is characterized by the vibrational relaxation frequency, fr' of each mode.

The theory of molecular relaxation absorption is well set out in references [5] and [10] . it
predicts the attenuation coeff

4
cient of a single relaxation process as

0
vib 2 Af

2
/[l + (f/.r)2) (9)

Af
2  

(f " fr)

Afr (f >> fr)

Thus a v increases as (frequency) 2 initially, in the same way as a , but levels off to a constant value
beyondie relaxation frequency. The a . contributions from diff~ent vibrational modes are additive
at atmospheric temperatures, since each Me contributes only a small fraction of the total internal
energy:

avib vib(02) + "vib(2), + avib(C02, transverse) + .... (10)

Only the three contributions above will be discussed nere, since they account I the whole of avib in air
to within the accuracy of available data.

In dry air, fr(
0') and fr(N9) are very low - of order 10-20 Hz - and f (CO) is around 10 kHz. The

oxygen an-nitrogen a~sorption r tes at audio frequencies are correspondingly &hw, levelling off at between
I and 2 dB/km, and their contribution can be identified in Fiqure 1 at the low-frequency end of the 0%
humidity curve. The contribution from CO2 relaxation becomes significant betwcen I and 10 kHz (same
curve);, it is roughly comparable with the classical absorption over this range.

The addition of 1120 as water vapour, however, greatly increases fr(O) and f(N 2 ). Collisions with

H90 molecules help to couple the translational modes with the vibrationalnodes o 12 and C, so that

eluilibrium is reached much ore quickly. A similar but relatively small effect is expected with COV;
this is because at the low CO2 concentration present in air, collisions with any 1120 molecules present
will be relatively infrequent for CO2 as compared with 02 and N2.

The overall effect is to increase the attenuation rate in humid air relative to dry air, particularly
in the frequency range from I to 50 kHz. The relaxation frequteies fr(0 ) and f (142) are moved up into
the audio frequency range, while the product Afr remains essentially unchallged; chus a rises to a much
higher plateau. This may be seen in Figure 1, and more clearly in Figure 2 where the l1Uncipal contri-
butions are plotted separately.

The parameters A and f in equation (9) depend on temperature, water vapour concentration and pressure.
The product Afr is predictaile theoretically [10], and is relatively well established for both the 0 and
N contributions. However, values of f have to be determined by experiment and there is consideragle
satter in the data [8]. Estimated r~laxation frequencies for saturated air (RH = 100) are plotted in
Figure 3, and corresponding A values in Figure 4, but actual values may deviate by up to 15% (02) or 35% N2 )
over the temperature range given.

In order to adjust the values in Figures 3 and 4 for changes in relative humidity, the following fac-
tors may be applied:

(2) fr - (Rif) A - (RH)- I  (no P dependence),

(02) fr (I)' 3 p 0 "3  
A , (RH)'I" 3p0 "3  ) (11)

Here P is the pressure in atm. The scaling laws above are expected on theoretical grounds to hold down
to absolute huriditi_,s of about h = 0.02 (per cent.), but supporting data are scarce below h = 0.1
[8,11,12].

3.1 Prediction methods for relaxation absorption in air

Detailed formulae for predicting N1 and 0 vibrational absorption in air are given by Sutherland [8]
and Bazley [11]. The latter report inciudes tibles for the total absorption at frequencies from 500 Hz to
100 kHz, temperatures from 0 to 30 C, and relative humidities from 10 to 95 per cent. Similar tables,
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but based on the formulae given in reference [12] ,+ are available from the Engineering Sciences Data Unit
[13] ; these cover frequencies from 50 Hz to 100 kHz, temperatures from 270 to 310 K, and pressures
P 0.8 to 1.1 (atm). These predictions may be taken to supersede the SAE methods of 1964 [14] and 1975[15g.

The accuracy of all the above prediction methods is limited by uncertainties in f (0)^and fr(N).
The scatter in the available measurements indicates that over the temperature range 0 [o &OoC, ab an be
predicted with certainty only within a factor 1.2 (for 0 , relaxation) or 1.4 (for N2 relaxation). Since
these two mechanisms between Them dominate the total atthnuatlon in the audio frequency range, similar
factors must be presumed to apply to the absorption tables (11,l.IJ. This is borne out by detailed com-
parison of the NIPL and ESDU tables, which differ by a factor of up to 1.4; the largest discrepancies occur
either side of the N relaxation frequency (typically 500 Hz - 2 kHz) where the absolute attenuation rates
are relatively 

smalla.

3.2 Further practical problems

When sound propagates over distances of order 1 km or more in the atmosphere, the difference in
attenuation between two frequencies only one-third octave apart may amount to several dB at high frequencies.
Use of 1/3-octave band analysis in such situations requires special care; it is clearly not adequate to
apply an average attenuation rate, based on the band centre frequency, to the band as a whole.

Methods of estimating attenuation for finite bands of noise are presented in references [13] and [16].
They should be used with caution, however, as the need for a significant bandwidth correction indicates a
rapidly-sloping spectrum which should preferably be resolved by analysis at a narrower bandwidth. Further-
more, the possibility of nonlinear spectral transfer should be borne in mind under these conditions (see
section 6 below).

An additional problem encountered in atmospheric propagation is that a may vary significantly along
the propagation path. This is allL ' for in principle by integrating the attenuation along each ray
path of interest; becc se a depends nsitively on temperature and humidity, meteorological data are
required at points along the ray. Practical guidance in allowing for atmospheric non-uniformity is given
in reference [13].

3.3 Dispersion of sound due to molecular r~laxation

Although a knowledge of the attenuation coefficient a is often all that is required, there are
situations where the dispersion of sound waves is important. This is evidently the case if we need a
description of the acoustic 'etorm p(t). Even if we are concerned only with the power spectrum of the
signal, however, dispercion -imes relevant when the propagation is nonlinear. Two examples of nonlinear
propagation are discussed in section 6.

According to relaxation theory [5,10], dispersion and attenuation are related for nearly unexcited

modes by

(1 1) = ((f) (12)
co  c n Z n)(

The summation in equation (12) is over the various relaxing modes with relaxation frequencies fn" Thus
o(f) may be calculated for air from the data on avib(O2,N2) referred to earlier.

4. ELECTROMAGNETIC RADIATION ABSURPTION

Although air is virtually transparent to radiation in the optical waveband, it is strongly a,'sorbent
at certain infra-red frequencies. One of the principal absorption processes involves the rotational
excitation of water vapour molecules; the absorption of sound which results from this radiative transfer
mechanism has been estimated by Calvert, Coffman and Querfeld [17]. The basic theory of radiative
absorption wi;ch they use is set out by Smith [l83.

At high frequencies ttypically above 1 kHz in air) the electromagnetic absorption over one acoustic
wavelength becomes small. This is the almost-transparent limit, for which the theory predicts an
absorption coefficient a(EM) independent of frequency and proportional to h/c (h is the percentage of
absorbing molecules, H20 in this case). Using the values in [17 to find thR constant of proportionality
gives

a(EM) = 32 h/cO dB/km (high-frequency limit). (13)

At lower frequencies the dependence of a(EH) on humidity and temperature is complicated, but the
numerical values in r17] indicate that down to 0.01 Hz the attenuation rate is roughly

a(EM) - 0.011 F
0
.
8 

dB/km (14)

at F kHz, under typical atmospheric conditions.

"The differences concern tie temperature dependence of fr for 0 and Nhod Over the range 0 to 400C,
they are fairly small compared with other uncertaintle, in the prediction Wthod.



Although the estimates above are for one infra-red absorption process only, they are believed to give
the correct order of magnitude for radiative absorption in the atnosphere. It is interesting to compare
these values with those for N, relaxation, which is the principal absorption mechanism in humid air below
about 1 kHz. Taking a relative humidity of 100% (which gives the lowest value of A in equation (9)) we
find

a(EM) < 0.03 avib(N2) for f > 50 Hz. (15)

Thus radiative tragsfer is insignificant above 50 Hz, but may become significant at infrasonic frequencies
because of its f" dependence (as compared with f2 fur vibrational relaxation).

5. ABSORPTION DUE TO SUSPENDED PARTICLES AND FOG

Significant increases in atmospheric absorption below 10 kHz can be caused by fog. Other suspended
particles may also cause sound attenuation, although the behaviour of volatile particles such as water
droplets is somewhat different from that of non-volatile particles such as smoke or dust. In all cases the
additional attenuation is aporoximately proportional to the particle mass loading m, defined as the mass of
suspended particles per unit mass of the surrounding gas.

5.1 Non-volatile particle suspensions

The theory of sound attenuation by non-volatile particles is summar'.-eu in references [19] and (20].
Dissipation is caused by heat conduction and viscous drag between the gas and suspended particles. For
each mechanism, the attenuation coefficient varies with frequency according to the relaxation equation (9);
the contributions from the different Techanisms are additive. The relaxation frequencies and high-frequency
absorption limits for non-volatile aerosols aro as follows.

(Heat conduction)

For particles ot diameter d in a gas of thermal conductivity k the thermal relaxation frequency is

fc = kd/(particle heat capacity) 1 ( 1)

where subscript I refers to the particle material, K is the specific-heat ratio C /Cn, and p, Pr are the
viscosity and Prandtl number of the surrounding gas. the high-frequency absorptfin oefficient depends
additionally on y (the ratio C p/C for the gas phase) and co (the equilibrium speed of sound):

ly- f 2 k(a) A-COFr " Pld 0 "< c << 3 (17)

(Viscous dag)

d = 7d/(particle mass) h l(18)
Pi

9 1 f 4 P l4 'lto P " I 0!T d <<S - g -I (

The physical significance of the upper frequency limits is that the temperature within each particle
is assumed uniform (for the conduction mechanism), and the unsteady viscous length scales' are assumed
large compared with the particle diameter (for the drag mechanism).

5.2 Evaporating particles (fog)

The possibility of phase changes (evaporation and recondensation) introduces complications into the
simple non-volatile analysis. The basic equations have been formulated and simplified predictions
obtained by Wooten and Marble [21,22,23]. A more detailed analysis was given by Cole and Dobbins [241
and subsequently shown to agree quite well with measurements in air/water fogs L253. Refiner'ents to Cole
and Dobbins's theory by Davidson [26] reduced the predicted attenuation for air/water fog by about 10%,
improving the agreement with experiment. The following approximations are based on the simplified
analytical results of Cole and Dobbins £24].

(Heat conduction - volatile particles)

Coupling between phase changes and heat transfer modifies the relaxation frequency for the conduction
mechanism to

ice =  fc'EV (20)

The factor E is typically of order 2-4 for atmospheric fog; it is related to the vapour mass fraction Cv
in the surronding gas byE + i MI ta y=M Ps

= +( (y--.) ilnC (note that Cv  1 " since the vapour is assumed saturated). (21)

±I.0. the viscous boundary layer thicknesses in the surrounding gas and in the fluid particles.

I!
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Here it (= h/C T) is a latent heat parameter based on the specific enthalpy of vaporization h for the
evaporatingm~ubtance, and MtH1 are the molecular weights of the surrounding gas mixture and vour
respectively.

The high-frequency attenuation (a0 )c is not affected by evaporation, however, so equation (17) still

applies.

(Viscous drag - volatile particles)

The presence of evaporation leaves equations (18) and (19) unchanged.

(Evaporati on/recondensation)

An additional relaxation process, associated with the time taken to reach equilibrium, betweer the
vapour phase and the suspended particles, produces a low-frequency attenuation band with the following
properties.

1Mf 61 1 (22

6 h  (f << I2mf (23)
(a,)e m . 6 (0l_)(or i - 1) _ = < m.f e ir . d)"

The upper frequency limit in equation (23) prevents the conduction and evaporation ranges from overlapping.
It may be relaxed if the eypressiop for i (f) is further divided by the factor 1 + (f/f )2; then the
attenuation ae reaches a plateau between tne frequencies fe a,.d ice' and falls off on eiher side.

10000 1 --
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FIGURE 5. Absorption of sound in saturated air (1 atm) containing
suspended water droplets, for droplet diameters of I um
and 5pm. The droplet mass loading (m) in each case is
10-

"
. Separate curves show the droplet and gas-phase

contributions to the total attenuation.

Figure 5 shows the predicted attenuation (a = a + ad + ae) for air/water fogs with droplet diameters
of I and 5 vim. This corresponds to the lower end o? the size range encountered in the atmosphere;
equjtions (17), (19) and (23) show that above each relaxation frequency, the atteruation is proportional to

l/d . The mass loading m has been taken as 10-3; atmospheric fogs range betwe.n about 10
"3 and 10-4, and

the theoretical equations above show that the attenuation is proportional to m (except at very low fre

quencies where f < f ). Thus the values used in Figure 5 correspond to the high end o, the att2nuation

range expected unlerenormal atmospheric conditions.

Comparison with the air attenuation predicted for corresponding conditions (RH = 100) shows that belev
10 kHz, fog can produce very large increases in attenuation. The attenuation is relatively insensitive to

air temperature, but depends strongly on the droplet diameter.

: .. ;:..--



5.3 Surmaaay of a~prxmetor.s involved in theory

q-1 (a) Nlim'-continuum and surface tension effects are neglected. For air/water fogs, this requires

(b) Suspended particler are assumed irientical and spherical.

(c) The density and bulk modulus of the irticles are both large compared with the values for the

surrounding gas.

(e) Tha particle mass loading (n) "s -nall.

Ie) In the estimation of ae (eaporttion mechanism), C is assumed small and the latent heat parameter
(n) is ess,-md l?.rqr. (Typically, n = 8-1G for ayr/water fogs.)

(f) Tl'e Lewis :umbe, for the vipour/noncindersing gas mixture (Le = Sc/Pr = K/D) is close to unity.
(Fer water eapur/air mixtures, Le 1 0.84.)

,c) The particles a.q sinail enough that departures from internal equilibrium are negligible, and
are sral; compared with the unsteady diffusion length scales (velocity, temperature and
mnccntratiun) in the surrounding gas. These requirements ar reflected in the upper frequency
limits ot. miuations (17) and (19).

5.4 Numerical valus for air/water fog

Tha follew~lng relaatiton frequencies and high-frequency attenuation rates are estimated for d I lm,
m = 10 3 , at 15 C ano I a1tr.

f. l1.u k.!z

fce 42 kHz (a.)c 1500 dB/km

fd 51.5 kHz (a.), 4100 an/km

fe 48 Hz (ae 650 dB/km

The valid frequency range (see (g) above) extends as far as the beginning of the high-frequency attenuation
piateau shown in Figure 5. Above this ,'ange, the attenuation may be overestimated by a factor of about 1.5.

6. NONLINEAR PROPAGATION OF SOUND 11 THE ATMOSPHERE

In ar ideal (nondissipative) fluid, non-
linear propagation effects would cause sound (K
waves to distort and eventually form shocks, r-__
as illustrated for an initia'ly sinusoidal
signal in Figure 6. The principal effect of I o
dissipative processes - including the various i o
relaxation phenomena described in sections 3 \
ar,d 5 - is to counteract the waveform 4-
steepening. If the nonlinear effects are * I 4 \
strong enough, recognizable shocks will
still cevelop but will have a finite rise It
time. The relation between the rise time *..

(t ) and the pressure jump (ap) is dis- "
cursed below.

The competing effects of waveform
steepening and dissipative smoothing may
alternatively be viewed in the i;requency
domain. Nonlinear distortion of the wave-
form transfers part of the wave energy to
higher frequencies; but the build-up ot
high-frequency energy is opposed by
dissipation, which attenuates the higher
freouencies more rapidly. A frequency
dnmain description is converiert for
studying nonlineer propagation ot con-
tinuous signals; the goverr.ing equations FIGURE 6. Progressive distortion of an initially-
are outlined in the second part u' this sinusoidal plane waveform in the limit
section. of small dissipation (a0). The initial

waveform is labelled 0; successive wave-
6.1 The rise time of fully-dispersed forms (I to 4) are shown for increasing

shock waves propagatic.i distances (doubling each time).

The structure of weak shock waves
in relaxing gases (including atmos-
pheric air) is described in detail by
Johannesen and Hodgson [27]. We shall limit our attention to fully-dispersed shocks, which are sufficiently
weak that their speed (relative to the undisturbed gass sies between the equlibrium sound speed (co) and
the frozen sound speed (cf). The upper limit on ap is accordingly

. +1 (aP)max cf- Co. (24)

POCo -
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In atmospheric air free from suspended particles, the structure of weak shocks is determined princi-
pally by the N and 02 vibrational relaxation processes described in section 3. We therefore interpret
cf as the soun speed well above the N2 and 02 vibrational relaxation frequencies. The difference between O_..
the two sound speeds is given by -J

cf- co  & co (Y c. (c' << 1) ; (25)

here (' is toie vibrational contribution (bot 1 and 0) to the spegific heat of air, divided by the gas
constant. Typical values are 5.0.10

-3 
at 5 C, and 7.75.10 

3 
at 25 C [12].

Ccmbining equations (24) and (25) gives the maximum shock strength for fully-dispersed shocks as

2 (y c. (26)

Thus for air at (5-25
0
C, I atm),

(LP)max 1 07-105 Pa. (27)

Typical pressure profiles, for (a) a fully-dispersed shock ard (b) a shock "hose stength exceeds the above
limit, are shown in Figur 7. The stronger shock exhibits d rapid initial rise in pressure - with a rise

) (b)
*N

4. 4t

T I
t t

FIGURE 7. Sketch of shock profiles in a relaxing gas, showing definition of rise tipe.
(a) Fully-dispersed weak shock;. (b) partly-dispersed stronger shock (shock
speed greater than frozen sound speed).

time dictated in practice by faster relaxatico processes such as CO vibration and molecular rotation -
followed by a region at the rear of the shock in which N2 and 02 vibrational relaxation control the
approach to cquilibrum.

Estiation of the shoc!, rise time in air is complicated by the presence of two simultaneous (N2 and
0 ) relaxation processes, but some general statements are possible. Thus for very weak shocks, up to a
limiting strength of

(O) max ,N2 c 2) (28)

the shock structure is controlied by g relaxation; here c(112) is the nitrogen contribution to c' in air,

with typcal values of 0.66.10-
3 
at 5 and 1.29.10

"3 
at 25 C. The corresponding pressure rise, for air

at (5-25 tC, I atr,), is

("P)max,N2 " 9-17 ?a. (29)

In the nitrogen-controlled region, the shock rise time may be estimated from equation (30) below as
though only N relaxation were present. On the other hand, shocks of more than 3 times the strength given
by (28) are cIntrolled by 0 relaxation and their rise time may be estimated from equation (30) as though
only 02 relaxation were pre~ent, provided the fully-dispersed limit (26) is not exceeded.

A convenient, if somewhat arbitrary, measure of the shock rise time is one based on the slope at tne
mid-pressure point (Figu-e 7,. With tis definition, Hodgson and Johannesen [281 have shown that in gases
with a single relaxing rode

4 -1

tr -., )coA•( ) (30)
p0

Here A is th- quantity plotted (for N and 02) in Figure 4. Thus in atmospheric air at (50C, 1 atm), the
iollv itig ris., times are estimated fo fully-developed shock waves.

tp = S Pa, 1. controlled:, tr - 4 rs x (RH/Il0)
"

p = 35 Pa, G, controlled: tr = 0.04 ms x (RH/lO0)
"1
.
3
. (31)

The bow shock observed on tne ground from hich-altitude supersonic aircraft (e.g. Concorde in cruising
flight) is commonly within this %p range, and rise times of 2-3 ms appear to be typical under these con-
ditions [29]. However, the rise time is sensitive to changes in atmospheric conditions (temperature and
relative humidity) as well as shock strength, and it remains a matter of some cuntroversy as to whether
observed sonic-boom rise times can be fully accounted for by relaxation effects - as proposed in references
"27] and (29] - or whether some other mechanism such as turbulent scattering is involved.

1' __
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It is instructive to compare the estimates in (31) above, in which real-gas effects are accounted for,
with the values obtained by considering classical and rotational absorption alone. The rise time in the
latter case would be

tr 8 IL (modified Taylor rise time), (32)
where m' is the equivalent longitudinal viscosity (4/3 + (y-l)/Pr)+. ,and p is the bulk viscosity

representing rotational relaxation in air (5]. Equation (32) gives (5C, I at)

Ap = 5 Pa, vibrational relaxation neglected: tr = 0.03 ms

ap = 5 Pa, : tr = 0.004 ms. (33)

Comparison of estimates (31) and (33) illustrates the importance of accounting for vibrational relaxation;
the classical/rotational rise times are too small by a factor of order 10 to 100 for such weak shocks.

A final comment on equation (30) is required concerning the shock development distance. The rise time
given by (30) reters to the asymptotic steady-state shock waveform; but development of such a waveform
from an initially discontinuous pressure jump, for example, involves spatial diffusion over a region of
thickness A '. c t Taking as a measure of the diffusion velocity the difference in sound speeds, (cf - co),gives the diffuin time scale as td A/(cf - co). Thus the shock development distance (xd = catd) is of
order

Xd c0
2
tr/(cf - cO) = Y kr( )(po) -, (34)

where x c /ff is the wavelength at the relaxation frequency of the dominant vibrational mode. Equation(34) predict vgry large development distances for very weak ()1 -dominated) shocks; thus for the 5 Pa shockconsidered above, x is around 30 km. Such large development istances clearly cannot be calculated
properly without taging account of the way the atmosphere varies with altitude; nevertheless equation (34)
- which is supported by numerical calculations in [27] - is useful for indicating orders of magnitude.

6.2 Continuous wave propagation and spectral energy transfer

We conclude this section by examining the cobined effects of dissipation and weak nonlinearity on
continuous waves (i.e. waves which are statistically stationary in tire, or approximately so). Of par-
ticular interest is-te influence of nonlinearity on the power spectrum of the signal; as the waveformdistorts, we expect sum and difference frequencies to appear, and in the case of a peaked spectrum (such as
jet noise) nonlinearity will cause a transfer of energy from the peak frequency region to lower and higher
frequencies.

The governing equation in the frequency domain is a modified Burgers equation, which for plane (one-
dimensional) waves takes the form

1+ ' = Z c 'q (x is the coordinate in the propagation direction). (3)

The Fourier-transforied variables (p, ") are related to the time-domain variables (p, q) by
" 1 T

f(x,cJ) = / 
f(x,t') exp(-iwt').dt' (t' = t - X/Co),

0
i.e. , X/Co+T

f(x,w) = exp(iwx/co) f f(x,t)exp(-.iut).dt. (36)
x/c0

The sample length T is chosen large enough to give adequate frequency resolution of the signal. Other
symbols are defined as follows:

q = 2 (x,t) square of the pressure signal

(c - icx) complex coefficient representing frequency-dependent attenuation and
dispersion

c = J(y + l)/Poco 3 
nonlinearity coefficient.

An equation for the power spectral density of the pressure signal is obtained by multiplying equation
(35) by the complex conjugate p* and taking the r-al part of the result. Ensemble averaging and dividing
by T gives [30]

d (2mx e2oX
d p(e = -c w Qpq, (37)

where S. is the power spectral density of p at any point, and Q is the imariary part of the cross-spectral

densitypof p and p
2
. Note that dispersion, although allowed f8P, does not apoear explicitly in this result.

' Equation (37) describes the spectral transfer process in statistical term, for plane propagating waves.
The corresponding equation for spherically spreading waves is

- .d e2ar 22m
T' (r2e = - u rl e

2
a

r 
Qpq (r a distance from origin). (38)

Note that in the small-amplitude limit, the Q terms on the right of equations (37) and (38) become
negligible; the equations then reduce to thel'gell-known linear forms. Direct measurement of the right-

Z_
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EXPERIIIENTAL MEASUREMENTS OF MOVING NOISE SOURCES

by

L. Maestrello and T. 0. Norum
NASA Langley Research Center

Har.pton, Virginia 23665

SUMMARY

This report prnsents results of the far-field pressures n'easured from three
different types uf -oving sources. These acoustic sources consist of a

point monopole, a small model jet, and an aircraft. Results for the pressure

time history produced by the point source show good agreement with those

predicted analytically. Both actual and simulated forward motion of the

model jet show reductions in noise levels with forward speed at all angles

between the source and observer. Measurement with the aircraft over both

an anechoic floor and over the ground yields a method for evaluating the

transfer function for ground reflections at various angles between the

moving aircraft and measurement position.

INTRODUCTION

Thi6 report discusses three types of experiments on moving noise ceurces and the interpretation of the

*easured far-field pressures. The experiments consist of i) a peint source mov-nr above a fi.ite

impedance reflecting plane, ii) a model jet in actual and simulatee forward motion, and iii, an
airplane flyover with and without ground reflection effects. This work is an Intearal part of a
prediction scheme for the effects of forward motion on noise radiation. From the practical point of view,
one must account for the effects of motion of the sources and their location relative to rearhy scattering
surfaces.

In section I, preliminary information on the motion of noise sources is obtained by looking at the simplest
source, the point monople (Ref. I). The experiment is carried out 'ing a small monochromatic source
which behaves 'ike an acoustic monopoie when stationary. The purpose of this experiment is to determine
the behavior of the source when in motion at constant speed.

There are different types of sources that radiate in the same manner in a stationary medium but radiate
differently when In motion. The present experimental source consists of a time rate of introduction of

mass, so it should behave like an acoustic monopole in the wave equation for the velocity potential. The
experiment was designed to determine if motion yields the expected changes in source directivity.

The source was positioned above an automobile via a guy wre supported mast. The automobile was driven
at constant speeds over an asphalt surface past a stationary microphone. The resulting measured time
histories were then compared to analytical computations of a monopole moving above a finite impedance
reflecting piane.

Section I reports experiments of a model jet in both actual and simulated motion (Ref. 2). The model
nozzle was first mounted above the same automobile used in the experiments reported above. The vehicle
was again driven past stationary nicrophones in order to quantify the effects of motion on jet mixing
noise. The nozzle was then t-sted in an ane.hoic environment with a free jet simulating the forward
motion The results of these two methods of obtaining forward speed effects on jet noise are compared.

In section III, tests conducted using ai airplane (a T-38 NASA trainer" vehicle) are reported. Measurements
were taken over an anechoic Floor as well as over the ground, and auto-correlations of these measurements
were octained fo:" short time intervals corresponding to a particular position of the aircraft. These
show the dir'ct siqnal for toe microphone over the anechoic floor as well as a combination of the cirect
and reflectei signals for tho microphone above the ground.

The simultaneous processing of the signals "-'ived by the two m:crophones permits one to determine the
transfer function of the surface for a large range of frequencies and source positions. This approach
will permit correction of flyover spectra for contamination by ground reflections.

The results of these three tests are presented and discussed together with recommendations for future work.

I. POINT SOURCE IN IOTION

The experiment was conducted by placing a ooint source above an automobile, and driing it over an
asphalt surface past sideline ..icrophones. An analysis for an acoustic monopole moving above a reflecting
plane was made and results from the experiment and analysis are compared :or oifferent forward speeds.

A. Description of Experiment

The experimental source consisted of a .0 watt acoustic driver necked down to a 1.52 cm diameter
tubular opening. When driven by an oscillator at a discrete frequency, the output of this source consists
of tones at the oscillator frequency and its harmonics. By appropriate filtering, the measured signal
consists essentially of a discrete frequency.

IL.1 . /1
•

-
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The source was positioned 7.9 m from the ground above an automobile via a guy wire supported mast (Fig. 1).
An oscillator located in the trunk of the vehicle excited the source at a frequency of either 1230 Hz or
2310 Hz. The automobile was driven at constant speeds ranging from 13.4 to 44.7 n/z which were recorded on
a strip chart within the vehicle. Sideline microphones were located at a closer approach distance of
11.0 m and positioned 3.0 m and 6.10 reters from the ground surface. The experiment was performed on an
aircraft runway consisting of a 16.5 cm asphalt surface on top of a concrete foundation.

POIjt SOURCE

Figure I.- Moving point source experiment.

Tha pressure signals were zeasured ;th 1.3 an diameter condenser ricrophones anid recorded on magnetic
tape. In both the recording and reproduction staSs the data were pa-sed through a band pass filter set
to oass all the frequency compo.erts possible due to the Doopler effect on the oscillator frequency. The
enelo tapes were digitized at the rate of 10,000 points per second.

The os:illztor frequency was set to an accuracy of + I Hz. Vehicle speed vried by no more th + 0.5 /s
over the test zone. The frequency response of the recording and analysis systen was estimated to-be flat
within + 0.5 d3 over all frequencies of interest.

B. Analysis

For the monopole of angular frequency , and strength qo moving with constant velocity U in the x
direction at a distance h obove the x-z plane 'Fig. 2). the propagation is governed by:

02 4 ix, yz,z, t - ,e ir)t 6(x-Ut) 6(y-h) (z) (l)
02 s hewav oerto ..2

where 2 is the wave operator, 2--- and is thr acoustic velocity potential. SpecifyingC t

the x-z plane to be a locally reacting surface of norml mpedance , the velocity potential must satisfy
the condition:

l i .-iy ;(x, v, z, t) = 0 at y = 0 (2)

where Z Vc and ;c is the ,c.ustic impedance of air.

Through the use of a Loentz transformation and a susequent Fourier transformation on the patial
variables, the solution valid at a sufficient distance above the plane is

2 2iky
2R 211

(Y, y, 7*, t) (q0/4.) eikY
2
(ct-Mx) (e i R1 + CR ,Rdl (3)

where
RI = ix -4ct)

2 + ((y - hi/y)2 + (z/y)2 112, (4a)

R2 = i Mct)2 4 ((y h)/y)
2 

+ (z/y)
2] 1/2 (4b)

Z(y + h) - y
2(R 2 + H(x -Mct))

Z'y 4 h) + v
2
(R2 + M(x - Mc:t))

Note that if the Mach number M is set equal to zero the solution reduces to that for tile stationary
source (Ref. 3) with the reflection coefficient given by

CR % (Z coso - 1)/(Z cosa ; 1), (5)

where o = cos- I(y I h)/(x
2 
+ (y + h)

Z 
+ z

2
})!

2] 
is the angle of incidence. This stationary source

solution is stated in reference 3 to be a very good approximation as long as the observer is not closer
than a half-wavelength to the boundary surface.
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Hence, in addition to the well-known convection effects on U%! foram of the airect nd reflected waves,
source rtion Introduces a convection term. into the reflectiot cuefficient. This convection term in
Eq. (4c) is seen to be more important for small values o" impedance and larje incidence angles (svell
grazini; angles), and increases in significance as the source velocity inz.,eases.

SMtCC T r.-IS10f
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The acoustic pressure is obtained in the u-i:al nanner frvri the veiocity nctential by

p(x, y, z, t) - r f(x, y, 7. t)Pt. (6)

C. Results and Comparisons

To investigate the effects of moti.on on the expermer.tal potnt source and the eAtent tj nich t-'e observed
signra can be predicted analyticclly, various compari oric of the time historie!L were made. These
caiparisons are shown in figures 3-5, in which the mean 5quere pressure in dlB is plctted again.st the
normalized ti-me g Jio, where U is the source velocity ind o ic the closest apprach distance. The

analytical Lear. square pressure was confuted at discrete points in ti,-R from cq. (6), where.s the
eyperimenM v-a!ues were obtained by averaging the digitized data over a time irterval corresponding to
a giver. inr.crement in the source travel distance. The comparisons below include the effect of analysis
time or, toe perceived reu-lts and the effe.ts of varying source velocity and obserVEr height.

" i V Figu" l~ 'r

"-/20 & Vh I V"re 3.- Effect of analysis time on experimental

.,oise-t.e history. ii.)urce frequency F = 1230 Hz;

s,,rce velocity U - 13.4 s/z; observer height
h = 3.05 m; an aly-is tim: (a) 1.52 cm/point,

" r  t, . b) l.7cmpoint, (c) 152 cnipoint

ii~ 1-20L

-6 -4 -2 0 2 4 6

NIORPAL!Z-D TIME Ut/o

Io see the effect of anlyli. time on the observed signal. one 0f the experimental time histories was
analyzed using three different analysis tiris. In figure 3a, each plotted point corresponds to 1.52 cm

Lf source travel distance (1.5
. 
cn/lp ent), whereas 10.7 cm/point and 152 c.m/point were used in figure 3b

end 3c, respectivily. Each of the first two curves show the pattern of alttrnate reinforce-ents and
cancellations caused by tme reflected wave, although the magnitudes of the cancellations are seen to
difter by as much as 10 dS between the two curves. (The same phenomena was obtainable with the theoretic.l
rcsiilts when different time intervals et-ecn corputed points were used.) This not unexpected fact
iilu-trates that little inforsatlin at-out the reflected wavu from an acoustically hard surface can be
obtained from a consideration of te riagnitudc of the cancellations. Figure 3c shows that the details of
the reflection process are Irst i; the analysis time is not chosen small enough.

A com.prison of the theoretical and experi.-ental results is qiven in figure 4 for the two different observer
n heights. The time interval ben!depn ccvnputed points for all the theoretical curves presented was chosen to
correspond to 10.7 cn/ooint. Superimposed on each of these curves is the signal that would he received in
the absence ofthe ground surface, obtained by using a va!ue of zero for the reflection coefficient. The
value chosen for the -.orinalized ground impedance in the theoretical curves was Z - 4 - i4, a value
indicative of a fairly hard ground surface. One can see a good agreement between the curves both in shape

* and in the Lime intervals between the alternate reinfercerients and cincel'ations. Decreases in the time
Interval between successive reinforcements and cancellations are seen to occur in both the theoretical and

experimental results with increasing ground to observer distance.

L -.. ./- - -:



*The effect of source velocity can be seen in figure 5. Since the time axis has been norinulized by using
,'the velocity, the shapes of the observed signal are the same. (The erratic nature of the experimental

~ ~ curves with increasing velocity is due to a smaller analysis time being used as the velocity increases.)

04

V 0

-20I
Figure 4.- Variation of theoretical and experi-
ce.tal noise-time histories with observer height.

.M.,Source frequency F = 1230 Hz; source velucity
O"F U = 13.4 m s; impedance Z for computed curves

-V,~ 4 - i4; cbserver height h: (a) 3.05 m (coiputLd);
L (b) 6.10 m (computed); (c) 3.05 rm (measured);""20 (d) 4;.10 m (rmasured).

oe

-6 -4 -2 0 2 4 6

NORMALIZED TIME Ut/a

Hany of the above results are qualitdtively predictable frcm a sirple consideration of the tire and
length scales involved. The purpose of the comparisons prese.ted is to show the gooa agreement in the
shapes of the experimental and theoretical results. This agreeent gives credance to the assumption that
the experimental source indeed radiates in the sa-e manner as a theor'tical monropole in miotion.

:WFigure 5.- Variation of theoretical and

M, axperi-rental noise-tie histories withj~o il~l~p.!li ! fi fsource velocity. Source frequency

F = 1230 Hz; observer height h = 3.05 m:

impedance Z for cei/Vuted curves 4 -h ' P ' t source velocity U: a) 13.4 mIs (c cm u.ed).
(b) 35.7 r/s (computed); (c) 13.A ts

"20 (measured); (d) 22.3 nls :ceasured)
( ) 35.7 n/S (measured).

.0 lie.,

E-, -I "2 0 2 4 6
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!I. MODEL JET III ACTUAL AIID SIMULATED MOTlO:I

The model nozzle was rmunted above the automobile In the same manner as tile point sC~uroe- and driven past

fixed microphones. The a'zzle was then munted in a anec~hoic facility inside a large free Jet simulating O-the forward motion. These two methods of obtaining forward speed effects On Jet mixing noise ave coup~ared.

The roisp generated by the automobile in motion was estimated from 'he test discussed in section 1. Since
the vehicle noise Is predoiinantly low freqlency, a high pass fitter can be used to suppress much of
this bac-.grou'.d noise. Th'5 necessitates the use of a high speed. sr-all diamet-.r jet to maintain the
spectral peak of the jet noise above the low frc-.uer':y cutoff. Hence a 2.54 cmn exit diameter r.ozzle run
at a nominal Mach ntrmber of 0.85 was chosen along wit,;, a 500 liz high pass filter. Since the spectral
peak of jet ncuise corresponds to a Strothal nter near n1.25, this peak should then occur around 3 kHz.
A mo,,e obvious reaon fo.- the high jet exit velocity was to obtain jet noise levels abnve that of the
vehicle noise throughout most of the spectra. Also, the high jet levels assure5_ minimum contaniratien
frtm: upstream valve rioise.

In,. nuzzlc fico %as provide~d by a high flaw accummilator filled with nitrogen and mounted in the trunk of
the* ve'icle The gas passed thro-iyh a long supply tube to the nozzle exit. For the chosen exit Mach
nunhr- of 0.85, between 2 and 3 seconds of constant mass flow could be obtained freom thir system.

'Dotmi the nozzle and microphones were positioned approximately 7.6 in (25 ft.) aoove the ground and the
closest approach distanc' betven vehicle and microph~ones was about 11 ci.

The test vehicle was driven ofer an aspralt surface past six sideline microphones at a constant speed
within the test section. The microphcnes were positionee at 'A m intervals parallel to the path )f thq
vehicle. Since the nozzle supply system was limited to about 2.5 secords. measurerents at all angles
of interest coul.d not be obtained during a single run. Hence each run was set up to obtain data for a
single nozzle to microphone emission a~gle. The vehicle position wtith respect to the microphones was
determined by long metal strips that functioned as electrical switches. These were pl,:ced perpendicular
to tie path of the vehicle ar'd activated by its tires. The signals produced by these switches were
recordeid along with the microohor.e signals. Each nicrophone signal was analyzed only .ver 3 mt of vehicle
motion such that the midpoint of the signal correspondedl to the desireO n-ozzle-microphone angle at the
enission tisne. Vehicle background noise was measured usiaig tne sam procedure without the jet activated.

Static jet noise data at each emission angle were obtained from two of the six microphones, with the
stationary vehicle positioned such that the two m-icrophones were located at the ext~e'e angles of t.he
corresponding motion run.

Five discrete nozzle-microphone emission anales were tested, equall) :~paced frorr 300 to 1500. Vehicle
Mach numbers of 0. 0.04, O.C8. and 0.12 were run. at all give angles. with the excep'tion that data were
not cbtalned at the two upstrear angles at the highest ,Peed due to a significant mas kinq il, the jet signal
by the vehicle noise. Each test condition, (corresponding to a giver vehicle speed and anqle) rnas repeated
a number of times, resulting in at least 2 secc'ds of data per con'dition.

:traer spectral densities (P50's) were obtairei froa: the mpasuremnts using a constant ,5anddidthi filter
of 72 Hz cver the range 5030 Hz to 70 kHz. Each acceptabe data segment was analyzed and those correspord-
Inig to a given test condition averaged.

The P!IO's for all test conditions at a nozzle-microphone angle of 330 iLre shown in figure 6. The
oackroud vhice nise(je-off condition,' is shown. as the continuous traces in 0he lowcr Part of the

fl-gure. Data at the higIest speed it' the frequency region near 4.5 kHz are not shown sintme this reg 5on
was contaminated by background noise Joe to acolian tones caused by the guy wires SUPoorttng the r.07z~le
supply tube.

40 Fig hure 6.- IMeasured Power tpectral densities
'-Jet n-zzie for jet and ve'micle noise at 3160 emission
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inere is no discernable difference between the static and motion spectrum at the lowest vehicle speed.
At the higher speeds, however, a level difference can be noticed over almost the entire sppctrum, this
difference increasing as the vehicle speed is increased. Also noted is the expected Ooppler shift of
the peak frequency to lower values with increa:;ing speed.

This decrease in level across the spectrum with increasing forward speed was obtained at all angles.
Details of these results can be found in reference 2.

Since portions of the measured PSD's were contaminated by background noise, the overall sound pressure
levels (OASPL) were estimated from the uncontaminated portions of the spectra. The estimated OASPL's
are shown in tiyure 7 along with the results computed from the contaminated PSD's. It can be seen that

there is a consistent decrease in the estimated OASPL with 
4
ncreasing forward velocity at all nozzle-

microphone emission anqles, as one would expect from the .pectral results mentioned above.

OASPL computed from PS0
0 contaminated with back-

ground noise

o Estimated OASPL
b8
86 -84 -ro 300
82
88

8Co

Be 0 Figure 7.- Variation of overall sound pressur.
84 - level with forward velocity. (Moving vehicle

OASPL, dB 82 tests.)

80 o g00
78

80
78 0

76 -o 200
74 I

74 o

72

68 1 1500 r__3 .04 .08 .12
Vehicle Mach number, M

B. Tests with the free jet

The free jet used to simulate forwird motion was limited to a maximum Nach number of 0.11. Positioning
of the let in thp anechoic chamber restiicted measurements i the upstruam direction to 1200. Other
then these limitations, test cunditions with the vehicle were epeated using the free jet. Air was
used instead of pure nitrogen for the model jet.

The free Jet exhausted vertically from a 1.2 m diameter noZle into an anechoic environment. The 2.5 cm
jet nozzle was positioned at tho center of the free jet. A 1.3 cm (half-inch) condenser microphone
designed for free-field linear response past 20 kHz was located on a boom that traversed an arc about
the center of the model nozzle exit plane on a 3.7 m radius.

With the model jet maintained at a Mach number of 0.85 the free jet was run at the static case (no flow),
and Mach numbers of 0.04, 0.08, and the maximum available, 0.11. For each test condition the
microphone was held stationary at discrete angles from the downstream centerline ranging from 300 to 1200.

The noise nenerated above 500 Hz by the free jet was insignificant at all test conditions. Hence, the

problems associated with background noise present in the vehicle tests were nonexistent during the tests
with the free jet. However, the presence of the free jet shear layer requires corrections to correlate
noise emission angle with observer angle.

Acoustic pressure power spectral density measurements using 400 Hz bandwidth are shown in figure 8 for
the test conditions corresponding to an observer angle of 900, the angle where the shear layer corrections
are a minimum. One can make here the same observation as with the vehicle test-relative motion tends to
decrease the jet noise level trroughout the spectrum.

The true emission angls corresponding to the measured results were computed in the standard manner (c.f.
re,. 4) under the assumption tact t!', nolco or;girites at the nozzle exit. 'Amplitude corrections due to
the shear layer were found to be less than 0.5 dB for all test conditions and hence were neglected.) The
measured OASPL is given in figure 9 as a function of the computed emission angle. Again, a decrease in. . the OASPL is observed at all angles with increasin g forward speed.

7,,5.
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C. Comparisons Between Vehicle and Free Jet Results

The difference in sound pressure level between static and motion conditions is generally correlated anainst
the ratio of jet velocity to relative velocity (the difference between jet and forward velocities). This
type of comparison should yield consistent results for flight simulation studies (free jet or wind tunnel)
since there is no relative motion between the jet and the observer. However, in actual flight the Doppler
effect results in a frequency shift of the entire spectrum, so this type of comparison (particularly when
done on a frequency-by-frequency basis) can be misleading. Nevertheless, in order to reassert the main
findings of this report in a fashion that is commonly presented, the static-to-motion OASPL differences
are given in figure 10 as a function of 10 log Mj/Mr l for both series of tests. The effects due to
convection that are sometimes .ubtracted from the OASPL differences before this type of correlation is
made (ref. 4) were computed to be less than 0.4 dB for all test conditions and hence were neglected.

112

110

108

Figure 9.- Overall sound pressure levels
106 including angular refraction correction.

OASPL, d0 (Free-jet tests.)

104- 0 Static

1'3 M 0.04
M 0.08

120 N 0.11

100

98 i

180 150 120 90 60 30 0

The uncertainty due to the procedure used In estimating the OASPL for the vehicle tests leads to the
considerable scatter shown in figure 10. The relative velocity exponent m lies somewhere between
3 and 6. The data uncertainty as well as the test limitations of high jet velocity/low forward speed
prevent a reasonable estimate of this exponent or its variation with emission angle. Nevertheless, an
increase in noise reduction with increasing forward speed is again clearly indicated at all angles at
these low velocities for both testing methods.
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III. AIRCRAFT FLYOVER MEASUREMENTS

To better estimate the effect of forward motion on real engine noise, flight experiments were conducted
using an actual aircraft. There are considerable difficulties to overcome before interpreting the far
field data from a full scale aircraft in flight. Existing studies on forward flight have yet to address
these difficulties but have concerned themselves with more obvious practical prerequisities. Since the
results of aircraft flyovers are still dubious, it becomes important to establish exact techniques to
iuantize the sound field from a moving aircraft. This section focuses on one of the fundamental measure-
ment problems, ground reflections. Measurements of the far field pressure from an airplane flyover were
taken over both an anechoic floor and over the ground. A method is presented for evaluating the transfer
function of the ground surface, which can be used for correct'ng data contaminated by ground reflections.
These corrections are independent of the source, but depend or, the geometrical orientation between the
sources and observer as well as on the distance from the microohone to the ground surface.

A. Method of Measurements

Since the objectives of this test were to separate the effects of reflection and to establish the properties
of the reflecting surface, microphones were located over both an anechoic floor and a reflecting ground.
The anechoic floor is shown in Figure 11. It consists of a semicircular surface with a radius of 12.2 m
composed of anechoic wedges of size 0.3 x 0.3 x 0.9 meters. The wedges areplacedone meter above the
ground and supported by wire mesh.

Four equally spaced microphones were placed over the anachoic floor, and an additional four over the
ground (Fig. 12). The microphones were oriented along the direction of the flight path at a height of
3.38 m above the ground. The ground surface consists of packed turf, typical of surfaces used in aircraft
flyover noise test. All the microphones are recorded simultaneously on magnetic tape recorder so that the
measurements over the anechoic floor and over tne ground surface were taken at the same time. The aircraft
used was a NASA T-38 airplane (Fig. 13). One of the interesting features of this aircraft is that the
two jets exhaust at the rear end of the fuselage, thus concentrating the emission over a small area. The
test was conducted at an altitude of h 305 meter at velocity of Vf 105 m/sec.

P~

Figure 11- Outdoor anechoic test facility

AIRPLANE FLIGHT PATH

-\ Microphone abovu the ground

Figure 12.-Microphcnes positions alove
12.2m -m the ane'hoic flcor and above the grouind

6.09m

Anchoic floor

- Microphone above the anechoic floor
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Figure 13.- Geometry of T-38 airplane

7.7

B. Results and Discussion

The data collected in oneoflyover was recorded over the time period of 14 seconds. During this time the
aircraft moved over a 140 arc with respect to the reference microphone. Seven auto-correlations were
obtaIneo, each over one record time interval, centered at the angles 0 = 360, 550, 900, 1240, 1440, 1560,
and 168 (Fig. 14). The overhead position cf the airctaft (900) is chosen as reference, such that at
0 o 36 the airplane is four seconds ahead of the reference, and at 0 - 1600 is is eight seconds past
the reference.

t=Osec

t 8 -t=- 6s /t c4 see t= 2sec -l t 2sec t se

__ sf -o s / s e c

PLANE OF THE MICROPHONES

Figure 14.- Positions of the aircraft for data analysis

The auto-correlations taken over the anechoic floor are smooth while those taker over the grouad contain
a second peak (Figs. 15 and 16). The time delay of this peak depends on the position of the aircraft
with respect to the microphone and is associated with the retarded time between the incident and
reflected signals. At - = o, the auto-correlation measured over the ground consists of the direct
signal and the reflected signal that was emitted at an earlier time, whereas the second peak at the
reflect+on. o _ 2h sin O/c consists of the correlation of the direct signal with itself after

In order to separately resolve the two peaks, the time delay of the secondary peak must be large in
comparison with the correlation time scale of the direct signal. The measured siqnal can also be deconvoluted
in the frequency domain, since the auto-correlation can be interpreted as the convolution of the transforms

of both direct and reflected signals (See Ref. 4).

The position of the aircraft was determined from the auto-correlations over the ground. Notice that the
time delays of the secondary oeaks in Figure 16 increase from 0 = 360 to 900 and then decrease again
as the angle becomes larger than 900, as expected from the expression rclating ro to 0. Use of this
expression along with the measured value of to then yielded the aircraft pootion (i.e., 0) at the
emission time of the direct signal. In addition to using the auto-correlation to determine the position
of the aircraft, the cross correlation between two adjacent microphonescan also be used to estimate the
speed of the aircraft.

The main objective of this experiment, however, is the evaluation of the transfer function (T) of the
reflected signal from the surface. This function is defined as the ratio between the spectrum measured
over the ground (S ) to that measured over the anechoic floor (Sg) over the same time interval, and depends
on the angle 0, ]he distance of the microphone from the grounB (h), and frequency.

P/
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Figure 15.- Unnormalized auto-correlations over the anechoic floor.

Computed resuits of this transfer function are shown in Figure 17 for three different values of 0. The
oscillatory behavior is due to the fact that the spectra from which the transfer function was derived are
themselves not smooth because of the short averaging time necessitated by the motlot, of the source. Also,
the nature of reflections leads to non-smooth spectra measured over the ground. hlowever, fcr the practical
purpose of correcting the ground spectrum for reflections, the transfer function can be averaoed as shown
by the smooth lines in Figure 17. These curves show that the corrections needed for ground rcflections
spread out ir. frequency as the source approaches the overhead position.

Using the average spectrum of the transfer function, the ground spectrum for 8 - 360 was corrected and
shownin Figure 18 along with the two corresponding measured spectra. As can be seen from this fiqure,
the spectrum coirected for ground reflections by the transfer function agrees well with the spectrum
measured over the anechoic floor.

Pursuing ground reflection corrections utilizing the transfer function approach rather than the more
common ground impedance measurements is certainly easier and more practical for any engineering approach.
Measurements of surface impedance are known to be difficult and even at the present time these data are
ambiguous and lnc',..plete. In addition, discrete frequency measurements of surface impedance Yields largescatter in resu::b. The transfer function approach instead uses frequency bands so that oscillations are
not as pronounced. Also, from the engineering approach it is easy to understand and simple to apply.
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CONCLUDING REMARKS

Experiments were conducted with three different types of noise sources in motion. A discrete frequency
point source moving over a reflecting surface yields results that agree with those predicted analytically.
Measurements of a model jet in actual and simulated forward motion both show that the noise decreases with
increasing speed at all observation angles. The fact that observed effects in flight testing of
actual jet engines do not appear in these model jet tests suggest that the flight data includes ins.tallation
effects and, or sources other than pure jet mixing noise. Auto-correlations from noise measurements of an
actual aircraft in flight over a ground surface gives an indication of reflections from the existence of
a secondary peak in the correlation. This secondary peak also allows determination of the position of
the aircraft. Simultaneous measurements over an anechoic floor and the ground permit the evaluation of the
transfer function of the reflected signal from the surface and hence allow the spectrum to be corrected
for ground reflections.

There is much work to be done to establish the effects of motion on aircraft noise. One step is the
establishment of the temporal and spatial distribution of the sources in a jet in a fashion amenable to
experimentation for both stationary and moving aircraft. This technique has been tested for a model
stationary jet in reference 5. Furthermore, it is necessary to reduce the nonstationary signal (resulting
from the motion of the aircraft) into an equivalent stationary one, such that comparison can be made
between static and moving aircraft. A preliminary investigation of this effect is reported in reference 6.
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The single-zero assumption is appropriate if
U < c at all points of the source distribution;

otherwise equation (6) is replaced by a summation 5)
over the zeros of f(r). Differentiating equation
(5) with (X', , to) constant gives

f'(r) - -l + Hr/Co (U - component of M towards b
the observation point);

(7)

thus the pressure follows from equations (4) and
(6) as

1fq(y', To) 1

p( to) -•- ) d' (8) FIGURE 1. Sketch of the function f(i)
47T 0  in the vicinity of r -To

where the Doppler factor D is defined by

D - 1 - Ur/co, (D 0). (9)

Equation (8) states that when a moving coordinate
source description is used, the contribution from
each volume element dy' to the pressure - h
p(x, t ) contains a weighting factor ID(T_)-. The quantity To is the emission time crresponding

to the reception time t , and must be determined for all points of the source distribution before the
volume integral (8) can Be evaluated.

For supersonically moving sources, D(to ) may be zero at some point in the source distribution; the
integral in (8) then contains a singularity which is usually integrable, but makes the equation unsuitable
for numerical evaluation. In such cases it is more convenient to use a fixed-coordinate source descrip-
tion, as discussed by Hanson [I].

1.1 Far-field solution

Although equation (8) is valid for any observation point , we shall limit ourselves in what follows to
the acoustic far field. This allows some simplification, in that a single representative value of the
factor I/r(T ) may be applied to the whole source distribution when calculating the pressure received
at time t ; the same also applies to the Doppler factor, when the source frame of reference has zero
acceleration. We therefore choose the origin of X' to lie within the source distribution, and defive

R(t) " r(' - 0); (10)

0 0 (y,' -0). 
(11)

Phy.lically, R is the distance from the origin ( ' ) to the observation point, and T is the
emision time at the origin corresponding to the reception time to. The fax-field solution may then

be written as

to) 4(ro)- J dx'. (12)

Thr implications of this result are discussed in sections 2 and 3 below.

2. FAR-FIELD RADIATION FROM ACCELERATED SOURCE DISTRIBUTIONS

In this section, we illustrate with some relatively simple examples the effects of accelerated source
motion. The results to be discussed are all based on the far-field equation (12), and for maximum simpli-
city we :onsider the source distributions in each case to be acoustically compact.

2.1 Tiae-varying volume displacement V(t)

A distributed volume displacement z(k, t) per unit volume is equivalent, according to linear theory, to
a so,.rce distribution

2
q = zs (13)

Thus the far-field pressure is given by an expression similar to (12) above, but with two extra time
derivatives (with respect to observation time to):

I O°  i ( _)2z(', To
P( ' VR 2°) 0rto J o d' (14)

to) u 4 (T j T

The definition of To, namely

to - :u + r(ro)/co, (15)

/
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gives (for constant , ')

dto - l - Ur(o)/codo D(o)dTo  (16)

and hence

(/to)( (/31) (17)

Thus the general far-field result, for the pressure radiated by a volume displacement distribution, is
Po I a 2 ?(X', T

O )

p(4, to) 4ToR() D(c-,) (r', dy'. (18)

At this stage we introduce two simplifying assumptions:

(a) The variation of D(To) over the source region, for given observer coordinates (x, to), may be
neglected.

(b) Variations in emission timC To  over ths source region, for given ( , to), are small on the time
scale of the source.

Assumption (b) - referred to as the corpactness as mption - requires the typical source frequency (in
the moving frame) to be small compared with c D/L , where L is the spatial extent of the source
region in the radiation direction. Taken together, (a) and (ba by

the source integral, 
(18).

The final result for a compact volume-displacement source is therefore

4(,R (o)  = t4 (n T V(")) , (19)

where V(T) - fz(y, r)dX is the total displaced volume and evaluation at r - r is implied.
Evaluating the deri atives explicitly gives 00

p( , to) 2 (( - Hr) V + (1 - )-
4
(31 r + Vir) + (1 - Mr)'

5
.3V(k )2),

4aR. ro r r r( r r (20)

as in reference [2]; here Hr * Ur/cn, and time derivatives are indicated by dots 4").

Equations 19) and (20) refer to the idealized case of a compact source for which the disturbance con-
sists only of a volume displacement. We consider next a complementary source model, in which the only
disturbance is a force field applied to the fluid. A compact moving body, which introduces both momentum
and volume, may be represented by a superposition of the two source types.

2.2 Time-varying force (t)

A distributed force with components f.(a, t) per unit volume is equivalent to a source di tribution

q - (summat3ion over i - 1,2,3) (21)

in the linear wave equation for p. But in a free field, a source distribution of the form

qq ax j... )-ij .... (summation over repeated subscripts)

radiates the same pressure to the far field as

q _ 2_)n f (subscript r denotes radiation direction);
c at rr..

0

thus the far-field pressure corresponding to (21) may be written down ismnediately, by analogy with the
previous example, as

p( , to) - 4coR(coo) D(To )  1 } I dX'. (22)

With the simplifying assumptions (a) and (b) used previously, we obtain the compact-force result

P(k, to) = 1 ) (TTF(c)), (23)
0 o 4,c R B lil )i

where Pr(r) - frf(, r)dX is the total applied force in the radiation direction, and evaluatioa at
T Too is implied. Evaluating the derivatives explicitly gives

I-2

P(k, t) - ((1 - t
1
r-F r + (1 - H r)FrIr), (24)

o

in agreement with Lowson [(3.

/ 2~ /



2.3 Accelerating body of fixed vclum"i

If a compact body of fixed volume V is acce.erared through a uniform iluid a, rest, it will exert a
time-varying force c on the fluid and the far-field sound pressure will be a combination of the two
previous results. IA the compact limit, equations (20) and (24) give

0 o °o r  3 ( I) + r ( Pr Fr' c
p(r, t) - 4 5 + 4.oR( 2 3

, (!-'r
) 4  

(1-Mr)5

I r + (-rr ,

where * - 2
P +er ( + velocity of body) (25)

is the equivalent total force including the displacement effect [2]. Equation (25) is consistent with
equation (7.4) in Ffowcs Williams and lHawkings [4], although the present result was not given explicitly
by these authors. The incompressisle version of (25), i.e. without the (1 - 11 )-2 factor, was given

earlier by Lighthill 153.

2.4 Acoustic sources in steady circular motion

The specizl case of steady motion in a circle has been extensively investigated in connection with models
of piopeller and helicopter rotor noise. Analytical predictions of mean square far-field pressure and
radiated power are given for a variety of compact idealized sou:-c types in references [2], [6] and [7].
In particular, the effects of rotation on the spectral density of the far-field sound are studied in
detail for broad-band sources. The reader is referred to these papers, and references cited therein, for
further details.

2.5 Compact body of volume V(t) movin at constant velocity

We conclude this section with an example in which sound is radiated as a result of a force '(t) and
volume displacement V(t), but the force itself depends on the motion. If a body of constant shape
but '•ariable volume is mo..cd with constant velocity 9, it vill exert a time-varying force on the
surrounding fluid. Dowling (3) has calculated the resulting far-field radiation on the assumption that
the flow round the body is irrotational (so that the force J(t) exerted on the fluid is given by
potential flow theory): in the case of a pulsating sphere, or example, she finds

1
o

to) = r ( " (26)

The Doppler index is -3.5, as compared with -3 for a pulsating body which exerts no force on the fluid
(section 2.1).

3. FAR-FIELD RADIATION FROMI UNIFORMLY llO,'ING S,'.URCE DISTRIBUTIONS

A special case with several practical application. is that of uniform rteady source notinn. In this situa-
tion, equation (12) which gives the far-field pressure radiated into a stationary uniform medium can be
further simplified, by bringing the Doppler factor outside the volume integral. hen this is done, the
moving-source solution resembles the solution for a fixed source distribution with a modified time
dependence. Applications to propeller and rotor thickness noise and *o turbulent jet mixing noise are-
discussed in detail.

3.1 The Doppler transformation

lie consider the general case of a source distribution of order n, specified by
an

q - ( ) f( ', t. (27)

fhe far-field pressure, with arbitrary notion of the source reference fra-e, is

p(x, to ) 1 4 i 2 j f(XO-,--- daf, (28)

by analogy with the displacement-distribution result (18). However, the fact that U is now steady and
uniform allows D(t ) to be replaced in the volume integral by the representative value D(T ), which
does not depend on y . Thus when the source reference frame is in steady translation, the far-field
pressure is

t) rID D ~ ) af(Y' To)dXv. (29)

'Note that R and D are both evaluated at the emission time -oo in equation (29).

An expression very similar to (29) above is obtaineo by considering the radiation frrm a stationary source
distribution with a modified time dependence. To simplify the argument we choose a tine origin such that
Too -0, and coordinate origins such that x at t 0. Comparison of the far-field pressures pro-
duced by the distributions

-. ;o: :7.2 .
I' 5-
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q n f(c, t) and q - n tID) (30)

HtOING STATIONARY

then shows that the only difference is the factor IDI' which appears in the moving-source result (29);
a detailed derivation may be found in reference 19). ,

It tollows that the far-field radiation from any moving source distribution of the form (27) may be found
by transforming to an appropriate stations.ry distribution as in (30), and multiplying the far-field
pressure thus obtained by a factor IDI-

I
.

3.2 Application to Propeller and Rotor Thickness Noise

By thickness noise is meant the sound field arising from the blade volume displacement, as discussed in

section 2.1. Nonlinear effects are not considered, and the rotating blades are regarded as acoustically
compact in the direction normal to the blade surfaces. so that the radiated pressure consists of a super-

position of contri-,zions - as in equation (19) - from each blade element.

Uniform steady translation of a rotating propeller through the surrounding fluid will have the same effect
on the thickness noise, under trefe conditions, as running the static propeller at a different rotational
speed and applying a fa.:tor 1D1

-  
to the pressure. This follows from the Doppler transformation des-

cribed above, since translation of the propeller leaves the thickness noise source distribution unchanged
apart from the superimposed ccnvection.

The far-field pressure at a given observation point is therefore obtained as follows.

(a) For any chosen reception time t , the emission time (T ) at the centre of the propeller disk is
calculated, together with the propeller position at that intant.

(b) An equivalent static propeller is defined which has the some dimensions but rotates at a speed I/D
times the original speed, where

1) - 1 - Ur( oo)/c o .  (31)

(c) lhe position of the static propeller ib chosen to coincide exactly ith the moving propeller at
time T

00

The tiue-hietory of the received pressure is then multiplied by 111DI to give the true time-histoiy ;n
the vicinity of t . For any finite observation distance R(T ), the emission direction will actualL,

change with time °(although slowly on the time-scale of the pressure signal) and the time-history thus
calcilated should be interpreted &s a local approxiiation arouna to.

3.3 Application to Turbulent Jet Mixing Noise

By making certain assumptions about the similarity of static and moving jets, Michalke and Michel have
baen able to apply the Doppler transformAtion to jet mixing noise.* The result is a method of predicting
jet noise in flight from static tests (or from test. at a different flight speed) which does not rely on

a specific model of the turbulent jet structure.

The application to jet noise is based on ighthill's acoustic analogy 1101, and therefore takes no
account of the refraction processes known to occur in high-speed jets 114 . Also, it is limited to
flight velocities parallel to the ;et axis. Nevertheless, impressive agreement has been demonstrated
in comparisons with aircraft flight data. An outline derivation ,f the main result is given below.

Ve begin by assuming that the mixing region between
a moving jet and the ambient fluid is similar to
that of a staticnary jet, provided the fluid pro-

perties at the nozzle exit are the same. Specifi- ~ -- '
cally, we assume that at a fixed position relative
to the nozzle (Figure 2), the mean shear and the Ut
turbulent velocity statistics scale on the
v.locity difference Uj - UF .
It follows from the above assumption that the

equivalent source distribution (q) for the moving
jet, in the Lighthill analogy, is the same as
that in a static jet of exit velocity U - UF.
The effect of motion at 1' on the far- -wjs FcrIO,
field Fressure ir reproduced - according to the
Doppler transformation - by substituting (t/DF) FIGURE 2. Sound radiation from a moving jet, viewed
for t in the static source distribution in rameto frence moving with te

q(, t), where DF  is the flight Doppler factor in a frame of reference moving with the
defined by nozzle.

1F  I + Up cos 0/co .  (32)

*Personal cocsunlcation, Hlarch 1979; paper submitted to Journal of Sound and Vibration.
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The appropriate change of time icale may be achieved physically by running the static jet at an equiva-
lent exit velocity UE, given by

UE (ij - UF)/DF. (33)

However, this has the unwanted side-cffect of multiplying the far-field radiated pressure by an extra
factor D -2 (relative to the original static jet with exit velocity HU - UF) in view of the scaling
assumption introduced earlier.* Thus the mean-square far-feld pressure fro the equivalent stqtic
jet" (exit velocity U) requires a correction factor DF

4  
in addition to the usual factor D 

-

arising from the Dopplet trznsformation.

The final result may be stated as

p 2(U, F) - DF2 p 2(Uh, 0); (34)

it rpplies to the mean square pressure in the same band of observed frequencies (relative to the sur-
rounding medium) in the two cases. There is no need to Doppler-shift the spectrum of the equivalent
static jet, since this is automatically allowed for in the Doppler transformation when the source time
scale is modified.

It is poqsible to rcfxnc the above analysis to make allowance for the stretching of the jet mixing region
which occurs in flight. The simplest assumption is to regard the entir jet velocity field as being
stretched in the axial direction by a factor a, with local velocities remaining the same at correspond-
ing points in the jet.

The introduction of the stretching factor a has two effects. First, the increase of axial separation
between corresponding pai s of points leads to increased tiavel-time differences for aroustic signals
reaching a given observer. This change can be allowed for by a change in observation angle, i' it is
assumed that axial interference effects are the principal cause of jet noise directionality: it is

necessary to observe the "equivalent static jet" at an angle 
8
E to the axis given by

cos OE  - a cos 8. (35)

The second effect of stretching is to increase the source volume by a factor a; since the source moment
densities are unchanged locally (by assumption), the mean square pressure radiated in flight is multi-
plied by o2 relative to equation (34). Thus the final result with approximate allowance for jet
stretching in flight is

p 2 UaD U(E 0) . O, 0E). (36)

4. DIFFRACTION OF SOUND BY SURFACES IN STEADY NOTION

The preceding discussion is based on a free-field model in which sources al-e convected through an infin-
ite uniform medium at rest. If diffracting bodies are moving along with the sources (for example, an
aircraft ving in the case of aircraft
noise), it is necessary to describe the
diffr.ction of incident sound in the SouNcE
presence of mean flow past th b~dy.

The typical situation is sketched in
Figure 3, in v frane of reference

fixed to the &;ffracting body. Steady
translation of the body is assumed, sothat ,.he relative flow field is steady.

It has been shown by Taylor [ 2] that
if the diffraction process can be des-
cribed (theoretically or experiment-
ally) in the absence )f flow, the
effect of a low Vach number potentialflow may be accounted for by a

straightforward transformation.

Taylor's transformation uses a modi-
f tLd time variable

t' - t + Co'l, (37)

where 8 is the velocity potential of
the steady flow field relative to t,^ O$SUVAT ON
body (so that -- grad ), and c c  POINT
is the speed of sound at infinity a:
ihere the flow is uniform). Th,. sN,ce
coordinates are left unchanFed. To FIGURL 3. Diffraction of sound by a streamlined
O(h) accuracy, the propagation of body embedded in a steady potential

flow field.

!*The equivalent quadrupole moment density o v.v. increaser in proportion to tie square of the static
jet exit velocity; so aso does the equiva!ni Jdipole moment density (1/0 - l/o)p/Sx i, with the
present scaling assumption. V

/ ... :



suall-amplitude irrotatioral listurbances is described in (x, t') coordinates by

1_ 22V2a , = 0 perturbation potcntial), (38)C
2 

t

as in the zero-flew case. :orecver, the rigid-body boun,'ry condition is unaltered by the transforma-
tion (more general boundary conditions are covered in rLterence [12). Thus as far as * is concerned,
the diffracted field in the presence of flow is related to the zero-flow result by a shift in the time
variable. The acoustic pressure p then follows from the relation

Dt Dt D , 7t + g.grad) (39)

where o iq the density at infinity.

Some insight into the transformation may be obtained by considering the special case where no diffract-
ing body is present and the mean flo, field is uniform. An acoustic signal which travels from the
source point in Figure 3 to the observation oint takes a time R/c° to cover the distance r between
the two points, where R is given by

r - .42 20
(l -sin H Kx

r - My + 0(11 2). (40)

Physically, R is the distance travelled relative to the moving fluid. Thn if we introduce the mod-
ified time variabjle

t- t + co- 2€ = t + co-l ,  (41)

the interval at' between soreand receiver is

At' - R/c) + Yx/c ° 2 tico + O(H
2  

(42)

with no influence from the flow to O(M) accuracy.

The transformation described above is useful only when the incident field is given; thus if a source~and a diffracting body are moving together through a uniform medium, the effect of the source motion on

the incident field must be determined first (for example, by the Doppler transformation of section 3).

A further point is that the incident field must be described in reception time coordinates (e.g.,
(r, 1) in Figure 3). Thus in the situation of Figure 3, changing the incident Mach number has a some-
what complicated effect on the sound field at a fixed angle 9. The relation between incident and
diffracted pressures is altered in a predictable manner, as described above; but the alt-ration in
the incident field for a fixed value is not obtainable directly from the Doppler tra,,sformation,
for example, since this applies only to the radiation at a fixed emision anple. It fol-ows that
measurements which involve moving sources and moving bodies require careful interpretat.m)n; the recom-
mended procedure is first to deduce the incident field* (by allowing for diffraction effects), and then
to seek a connection between the incident field and the source motion.

5. SOUND RADIATION FROM TURBULENT JETS

The directionality of turbulent jet mixing noise - at least outside the "cone of sil ,,ce" caused by
refraction - is largely due to the convected nature of the turbulent velocity field. In this section
"e adopt a specific model of the equivalent sources in a jet, and show how this lea,: to "convective
amplification" for Ltatic jets and also for jets in motion. We thea show how the _ 'sults are altered
by including the mean 'low field in the radiation calculation, with the aid of the ,vometric acoustics
approximation.

5.1 Static Jets - Lighthill Analogy

Because of the random nature of turbulence, we seek a relation between the statiscics of the sourca dis-
trib'tion (q) and of the far-field pressure (p). A convenient starting point is the following general
equation for the power spectral density of p, in terms of the cross spectral 4,.nsity of q at two
points (Q, 0 :

Here R is the distance of the far-field point from the source region, and Z is the unit vector
in :he radiation dirpcti.n.

"It is assumed that no feedback occurs between the diffracting body and the source, so that the incident
field 's unaffected by the body. Then if the source position relative to the body is fixed, the effect
of the body on the far-field radiation pattern may be deduced from experiments at a different (or zero)
translation velocity. I "
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If the source distribution is spatially coherent on a scale (t) which is small compared with the overall
cxtent (L) of the source region - as is expected for small-scale turbulence in jets - the inner integral
in equation (43) may usefully be interpreted as a local property of the source distribution. The "lacal"
contribution to Sp (w) per unit volume oL the source region is

P( . (4vR) Jd. ,Sq(' w)exp(i

n- 2[~,w]X)l (44)

where Q( , ) is the spatial Fourier transform of Sq( , w) and represents the source waventmber-
frequency power spectrum per unit volume.

We now restrict attention to jets of uniform density*, and introduce a specific model of the source
space-tire structure. According to the Lighthill analogy, for uniform-density jets

q -f o 7 ; - . (v iv j ; (

thus we expect a wavenumber-frequency spectrum of the form

Q - po2kikjkkm0ijtm(k, W (46)

(reflecting the double space derivative in (45) above). The function ijzm is assumed to have
ellipsoidal contours in (k, w) space, as shown
in Figure 4; the contours are defined by the
equation

(V)2 + (klUel)
2 
+ (k2Ue2) 2 (k3Ue3)

2

- constant - (w")
2  

(47)

where

w' - w - k , (48)

and the parameters (U U 1 U 2, Ue3 ) are
different in general f er Cech cotour Physi-

Cally, U is a characteristic convection velo-
city for Ehe source pattern**, while the para-
meters Uei determine the shape of each ellipsoid.

F1GdI E 4. Contours of the quadrupole
The ellipsoidal-contour assumption includes as a source .pectrum 0.. in
special case the Gaussian form assumed for wavenumber-frequei, Mspace,

. by Ribner [13] and Ffoucs Williams [14) shown for (k2,k3) - 0.
injt

4
eir early work on jet noise. To show that

it leads to the well-known convective amplifica-
tion factor, we make use of equations (44) and
(46): thus

R2 p() - !ro •
2
. [kikjk km ijtm(k ' 3k= /c °

2
Po 4

. I c4 i~~tmotm(0, w ).w (9
0

Here wm is the value of 0' corresponding to -=/co, i.e. from equations (47) and (48)
( U U U

-) = D = (1 - o
ccs ) 2+ (l2 cos20 + (_) sin 20, (50)(-= - m Co c) co n o

where we hav used

01I  cos O; a2 2+ n32 sin 20 ( - radiation angle relative to jet axis) (51)

together with the assumption 'hat Ue2 ' Ue3 ' U.. Equation (50) defines the modified Doppler factor D0.

The convective amplification effect follows immediately; equation (49) is multiplied by w to bring it
into proportional bandwitth (rather than spectral density) forr, and becomes02

R 2wp(w) = 1o-- Orrrr (0, wm).umr3-
5  (52)

f *For a discussion of the general ca3e, see reference £11].
**The convection velocity is taken as parallel to the jet axis (xI direction).

I¢
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(the notation 0 _ aimaa a 0-" has been introduced for brevity). Equa:ion (52) may be inter-
preted more cleat if we opr with the approximate form vali; for a compact* source distribution,
namely,

2

.
2 

p(w) = s 0wrrrr(0, ). 5 (ncoustically compact coherent regions). (53)

According to equation (52), the effects of source convection and non-compactness are accounted for by

(a) Evaluating the compact-source approximation (53) with the Doppler-shifted frequency wm in place
of the actual fraquency w;

(b) Multiplying the result by D
5

The ccnvective amplification factor D -5 is therefore superimposed on any directivity inherent in jet
noise, and imphes (for any given o mvalue) a strong dounstream bias in the far-field radiation from
high-speed jets. This and other impTications of equation (52) have been systematically applied by
Lush [153 to the study of jet noise measurements.

5.2 The effect of jet motion

The preceding analysis can be extended to allow for motion of the jet as a whole (as for an aircraft ia
flight), We shall adopt a frame of reference moving with the nozvle, as in Figure 2, so that the
ambient fluid is moving at speed U in the jet directior, The wavenormal diretion is denoted by the
unit vector %, as previously (wit .a1 = cos 0).

For a given wavenormal direction - i.e. a given emission angle 6 from the moving jet - the effect of
the uniform flow velocity UF may be deduced from the Doppler transformation described in section j.l.
This involves the jet-motion Doppler factor DF baed on the velocity J (-LF, 0, 0) at which rhe
jet moves:

DF ( - .V/) 1 + (UF/co)cos 0. (54)

Motion of the jet - described in nozzle coordinates by the wavenumber-frequency sjurce spectrum

Q(k, w) - is allowed for by defining an equivalent stationf.ry source distribution in which

(k, ) is replaced hy wDF.Q(1, DF). **(55)

The pressure radiated by the moving source distribution is ID t rimes that radiated by the equivalent
stationary distribution; thus the spectral equal ion correcpaging to (44),in a fluid-fixed relerence
frame, is

[.P(w)]r - JsR-
2
D2 '( -FDF)]=Fk/C°  (56)

The notation wF Is used here to denote frequencies relative to the ambient fluid.

Equation (56) may now be expressed in the frame of reference attached to the nozzle, by noting rhat fre-
quencies in this frame are given by

w - FD F
•  

(57)

Thus relative to the nozazle, we have

R
2
P(W) i~p-

2
Q(k, (58)

note that R is used consistently to denote the distance travelled by a wavefront relative to the
fluid (Lj. the source-observer Ciscance a' the emission time). This resskt 'ona.ilizes equation (44)

above, by allowing for a uniform flow field surrounding the source and extending to infinity.

When the convected-quadrupole source model described in section 5.1 is substituted in equation (58), we

obtain ta following result for the spectral density of the iar-Zield pressure:

2

R
2

wp(w) - __ rrrr(0, u 5). ] -5 -1 (59)C 4 D,reI~l.(9

0
Here the Doppler factor Dm,reI is defined by

( Fcs62 + 17 "1. v 2 ei 2 00 * (1 - c s0 + s(- s (n0)
m,rel c(c co60)

*"Compact" here means that over the acoustic wavenumber range Ik. < , 0rr ) rrrr (0, Q
Thus the coherent length scale Z is small compared with the ,ru 9avel+ng+rrO

**This relation simply expresses the change in time a;cale - and hence shift in source spectrum -

required by the Doppler transformation.

2 - , iii. ,>,j'i
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while the modified frequency used to define the source strength is

S D Drel ' ,FDrel" (61)

These results agree with the earlier work of Ribner (131 and Ffowcs Williams [14].

Comparison of equation (59) for the moving jet with equation (52) for the static jet shows three dif-
ferences:

(a) An extra factor ID, 
-
1 now appears.

(b) The .onvecti'e arrplification factor D m_-5 becomes D- 1m n,rel"

(c) The source spectrum is evaluated at a frequency Dr times the frequency relative to the
surrounding fluid. Mre

Thus if jet noise measurements from a moving aircraft were to be interpreted using (59), a frequency
faeor D 1 would be applied to srectra measured in proportional bands on the ground. The height
of the SpO= m would then be corrected for source convection and non-compactness effects by multiply-
ing by D Irel D.

5.3 Geometric acoustics radiation model

Recent advances in the understanding of jet noise, summarized in reference [11], have shown that the
agreement between theory and experiment can be greatly iuproved by allowing for the jet mean flow field
in the acoustic radiation model. Although the general calculation is complicated, reference [11] shows

that remarkably acLurate resul.a are obtained outside the co-called "cone of silence" by using geometric
acoustics (ray theory,.

The application of geometric acoustics to sound radiation from a moving jet is discussed in reference

[16]. Figure 5 indicates the model used:
the source region is placed in a parallel-
flow shear layer which represents the
mixing region of a jet in forward motion.

Wavenormal directions in the source and AsM=T (r., c. )

ambient regions are defined by unit vectors
and t respectively, with correspond-

ing polar angles 0s  and 0:

Los O s  asl, cos 0 - a (62)

These are related by the condition that the US s \\\\e C,
axial phase speed of the wavefronts should I JJ
be the same it. each layer. Thus

c - Us + cs/cos e UF + c/cos 0. (63) -r , T AXIS -

The radiation calculati.m proceeds in two
stages. First the value of p.2p(w) is
ca'culated within the source :N7gion,*
wich gives a rsult closely similar to FIGURE 5. Geometric acoustics model for
equation (58) except that U , the source- sound radiation from sources
region flow velocity, raplaces UF. in a shear layer.
Secondly, the changp in R

2
p(w) across thL

shear layer is found by energy conservation,

as described in references [163 and [17);
(see rh, notes on Acoustic Energy iti this serlea). The final result, which may be compared with
eqtation (59), is

R2 O(w) - 2nD,2 Pops e(s) (05 -5 D 1 (64)
R Pw lD, rel cL4 rrrr (0, wmw J n,r-lID l (4

where the modified frequenc, has the same formal definition as previously - see eqtation (61) - but
the modified Doppler factor is altered.

U - U
2 

-U
2  

U

Dmrel ql o cos 0)
2 
+ (-L- e)coS 2 + )2 s,re (65)

The source-region Doppler factor Ds,re I which appears in these equations is defited as

U -sU - UF
Ds,rel (1 + s ---- cos 0 I -- )----cos 0. (66)

*According to the GA approximation the source region is many wavelengths thick, so that a far field can

be defined locally.
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Apart from the different definition of D above, three significant features distinguish the GA
result (64) from the ,revious result (59)miehich no account was taken of the far field in the

* source region.

(a) The source term in brackets is evaluated in the emission direction ,rather than in theexternal radiation direction z. This is important if the source is inherently directional;

it also limits the application of equation (64) to angles outside the cone of silence.

(b) The mean square pressure is proportional to p 0p, rather than p02 as previously.

(c) An additional flow-dependent factor D.
2

re I appears in the GA result.

Finally, equation (64) gives the azimuthal average of the mean square pressure about the jet axis,
which is equal to the local man square pressure only if the jet noise field has no azimuthal
directivity (e.g., a round jet).

F. RADIATION TEROUGH A KOVING JEr F.OM UPSTREAM SOURCES

As a final example of pr,,pafation from moving
sources, we consider rae situation sketched
in Figure 6. A parallel 

round jet pipe con-

tains upstream sound sources which are charac-
terized by the wave field incident at th .open

end of the pipe. The fluid outaide the pipe INCIDrNT
is in uniform motion at speed UP, sirrlating WAVS, % .,4 1
steady motion of the jet pipe through the -.-
atmosphere in the opposite direction.

Two limiting cases are discussed in turn bela:',--
corresponding to high-frequency (multimode)
and len-frequency (plane wave) sound fields
arriving at the open end of the pipe. The aim
is to describe the effect of the external '1
flow UP on the external far-field radit:ion.

6.1 Geometric acoustics approximation "Y$s

In the high-frequency limit, two approxima-
tions are possible which simplify tie FIGURE 6. Geometric ac-,ustics model foi sound
analysis. transmission throgh a jet flow.

(a) Reflection of sound at tile open ene of

the pipe may be negle!rtei.

(b) The jet shear layer may be regarded as
acountically passive, so that the
radiated sound power equals tile incident
sound power.

In order to quantify the external flow effect,
let S i(W, 0 ) be the power spectral density
of theo

p
externcl farfield pressure (f: a given wavenorml angle 0J in the jet) wher.

UF " U, po  Pj, co " 'J (referen:c ca,e). (67)

In the ganeral case, radiation incident t angle e. tn tne jet axis will eme-ge at a different
angle, given by

Cos 0 , 1- J-1 (68)
e°  cos 0 )-

0

(obtained by assumWitg a stratified mean flow and equating axial phase Apeeds); the power spectral
density of the azimuchally-averared far-field pressure is then given by the energr relation

R 2Sp(w, 0) - Ri2 Spi( 0 j).(0o/pj)gj re4 (69)

p i (69)re

wl-,v R P. s- the radiation distances (relative to the fluid) in the two cases. te Doppler
factor DJ is defined by an equation similar to (I) above:

+ -U . u c sosJ -U -s o. (70)
• J,rel c j j co0

Equation (69) is based on acoustic energy conservation in z frame at reference attached to the jet
pipe, and the frequencies ,re all expressed relative to this frame. Conversion to o,har reference
frames (e.g. one moving with the ambient fluid) is facilitated by expre;sing the equation in pro-
portional-band form:

p - Di
2

Spi(w, 0j)j.(ro/0J)7 Jrel' (71)

-- X
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Equation (71) may be interpreted as follows. For given jet pipe conditions (flow plus incident sound)
and a given value of 0., the quantity in brackets, remains constant regardless of externl flow condi-
tions. Thus if the far-field radiation is observed at an angle 0 given b7 equation (69) - which
varies according to the external flow - the influence of the external flow field is entirely contained
in the density factor po/pj and the Doppler factor -4

DJ,rel'
The effect of UF on the Doppler a=plification factor becomes clearer if we write

Djrel - (1 + - cos 6.) D (72)

where D is the flight Doppler factor defined in equation (54). Thus for fixed jet-pipe conditions
and a given angle 0J, the relation

R 
2
sS (,0) - P (73)

expresses the dependence of the far-field pressure spectrum on the flight speed and ambient fluid proper-
ties; note that the jet parameters (U, Pi, c) do not enter into th.is result.

iNo ways in wh'ch equation (73) might be applied to aircraft noise are.

(a) As a method of no,malizing engine internal-noise measurements, for gLv',n engine perating conditions
and different flight speeds U .  Measured far-field spectra, multiplied by DF /0o, should collapse
at a given value of 0 .

(b) As a method of predicting engine internal noise in fight from static measurements.

For these purposes it may be more convenient to use the static situation (t' - 0) as a reference case,
and instead of introducing C

3  
as a parameter, to use the static radiat on angle 0E  defined by

Cos 0E  - DF cos 0. (74)

The inverse of (74), which gives 0 (and D I n terms of 0E and therefore correaponds to equation
(68), is

UF
Cos 0 - DF cos OE' DF c 1 - 7 Cos OF.  (75)

0
Thus the effect of changing U , all other conditions remaining constant, way be obtained from the
present model by using (73) ang (75), without introducing the jet parameters.

6.2 Low-irequency approximation

Below ble cut-off frequency of thQ lowest transveuse acoustic mode it. the jet pipe, the only sound wpves
which can propagate are plane (axial) waves. The external sound field due to plane waves in the pipe
has been calculated by Munt [18J, ijho accounted for the interaction between the end of the pipe and the
jet b5 representing the jet shear layer as a vortex sheet attached to the lip of the pipe.

The effect of the external flo4 velocity U in this situation is more complicated than at high fre-

quencies, ard cannot be expres-ed as a simple factor of the type DF-n. Nevertheless, the general trends
are the same; the radiation is amplified in the forward direction (wavenormal angles 0 > 900) and
reduced in the rear are, with a sector in the rear arc (similar to the cone of silence in the GA model)
where the model breaku down. Over mot of the angle range, the flight effect is roughly equivalent to

a Doppler index of -6, as opposed to -4 in the high-frequency limit; there is no change in the
radiatioi it 0 - 0

° .

rxperirental suppor,
. 
for Munt's predictions, based on model tests with an unheated subsonic jet, is

desLribed in refcfenzr. 1191.

7. CONCLUDING REMAR=S

The theory of sound radiation from soarces moving through a uniform medium is well established, and
detatled acmounts %y be found in the books by Morse and Ingard [20) end Goldstein [21]. An outline
is presented in sections 1 ann 2 of these notes, using a frame of reference in which the medium appears
staticoary; ronversion to any other canvenient reference frame is straightforward since all results are
given in terms of pressure, which (unlike intensity) is unaffected by motion of the coordinates. The
principal difficulty in applying these results lies in defining an appropriate source model to represent
the noise source of interest.

It it is required simply to predict the effect of steady motion on the radiated sound field, the source
model Leed not be prescribed in full detail. The Doppler transformation described in section 3 allows
the effects of &3utce motion to be predicted with minimal information about the source structure, by
relating the movinG-rource field to tho field of a' equivalent stationary source.

The problem of sound radiation from sources :n non-uniform steady flows is less well understood.
Analytical predictions are available only in certain idealized situations, such as irrotational low
Mach number flow (section 4), slowly-varying flows (sections 5, 6) and uniform flow regions separated
by vortex sheets ksection 6). Such predictions nevertheless provide useful insight into practical
problems, for example the radiation of exhaust mixing noise and engine internal noise from iircraft in

s. - flight.

N."~

yN-,-'
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A fina. connent is worth making about the interpretation of measurements on moving noise sources, such
as aircraft: should the data be presented in ter-s of the source position at the time the sound was
emitted, or the source position at the time of r ception? If the source is accelerating, the latter
has no physical relevance; but for steady unif( : motion, the use of reception tine coordinates offers
some advantage in dealing with diffraction effects (such as the shielding of aircraft engine noise by
the wing). This point is discussed further in section 4; it seems to be the main exception to the
general rule, that far-field sound radiation measurements are more easily interpreted in emission time
coordinates.
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SUMMARY

This paper reviews the fundamentals of diffraction theory and the application of the theory to
several problems of aircraft noise generation, propagation, and measurement. The general acoustic dif-
fraction problem is defined and the governing equations set down. Diffraction phenomena are illustrated
using the classical problem of the diffraction of a plane wave by a half-plane. Infinite series and geo-
metric acoustic methods for solvinq diffraction problems are described. Four applications of diffraction
theory are discussed: the selection of an appropriate shape for a microphone, the use of aircraft wings
to shield the community from engine noise, the reflection of engine noise from an aircraft fuselage and
the radiation of trailing edge noise.

INTRODUCTION

There is a growing appreciation for the role of diffraction phenomena in aircraft noise research.
Diffraction occurs for example in the propagation and radiation of engine noise from internal ducts, the
scattering of engine noise from aircraft wing, fuselage and tail surfaces, and the design and calibration
of special sensors for acoustic ,easurements. While diffraction theory is a branch of classical mathe-
matical physics with a voluminous literature, most available results are for pure tone plane wave, line,
or point sources diffracted by simple shapes. Aeroacousticians are presented with severe challenges in
extending this body of work to broadband, distributed noise sources and complex aircraft geometry in the
presence of a turbulent moving medium.

This paper is a blend of textbook results on diffraction theory and some current problems in noise
generation and measurement. The literature on diffraction is vast. Excellent bibliographies and com-
prehensive introductions to the theory can be found in references 1, 2, and 3. To lay a foundation for
understanding the later examples the pape,- begins by reviewing the essentials of diffraction theory. The
governing equations are set out, the Important physical phenomena are reviewed, and two solution methods
used in the practical applications are described. Four applications of diffraction theory to aircraft
noise related problems are discussed: selection of an appropriate shape for a pressure gradient micro-
phone, the reduction of community noise through wing shielding effects, the reflection of engine noise
from aircraft fuselage surfaces, and the radiation of trailing edge noise. The paper provides useful
background information for the lecture by L. Maestrello and A. Bayliss in this series entitled "Acoustic
Scatterinq from an Elliptical Body."

BASIC EQUATIONS OF ACOUSTIC DIFFRACTION THEORY

A sketch of the general acoustic diffraction problem and the field equations and auxiliary conditions
of diffraction theory are shown in Figures I and 2, references 2 and 3. An incident sound field from
either an incoming wave or a source distribution Q impinqes upon a body. Due to the presence of the body
a secondary or scattered field is produced. The complete wave field is a superposition of the incident
and scattered fields. The basic mathematical problem is to predict the scattered and total acoustic wave
fields.

The inhomogeneous wave equation is the partial differential equation which governs the incident and
scattered sound fields. The source distribution Q, when it occurs, appears on the right hand side of
this equation. The physically measurable quantities in the sound field, that is the acoustic pressure P
and the acoustic velocity vector u, are determined from the velocity potential ' by taking the time
derivative and gradient respectively as indicated at the bottom of Figure 1. For a solution of the field
iquations to be acceptable fromn a physical viewpoint, the pressure and velocity must be continuous through-
out the wave field.

In addition to satisfying the inhomogeneous wave equation, the solution must also satisfy several
auxiliary conditions listed in Figure 2. The first of these is the surface boundary condition which
states that the ratio of the normal acoustic velocity to the pressure at any point on the surface must
equal the prescribed surface admittance v. On a hard surface v = 0. Nonzero and generally complex values
of v designate various deqrees of absorption and comoliance for nonrigid surfaces.

The second condition called the radiation condition, assures that, with the exception of a prescribed
incident wave, the solution consists only of outgoing waves at large distances fom the body. That is,
in the acoustic far field the additional disturbance produced by the presence of the scattering object
must aopear to originate at the object and oroduce waves which propagate away from it. Another way tostate the radiation condition is that the pressure and radial component of acoustic velocity must be in "

phase in the far field. The third condition, the edge condition, Is reouired to ensure the uniqueness of
solutions for problems in which the scattering body has very sharp edges as when, for example, the body is
a thin screen or disc of zero thickness. From a physical point of view the edge condition assures that no
sound energy is generated at a sharp edge.

stat th raiaton ondtio Isthatthe~res~~yan raialcomonen ofacosti veociy mst e i
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PLANE WAVE DIFFRACTION BY A HALF PLANE

I ' Considerable insight into diffraction phenomena can be had by considering the problem of the dif-
fraction of a plane acoustic wave by a very large flat surface idealized as a semi-infinite half plane.
A two-dimensional formulation of this problem is shown in Figure 3. The half plane or screen is per-
fectly rigid so that the normal component of the acoustic velocity on the screen is zero.

Consider, first of all, a description of the sound field from the standpoint of geometric acoustics
in which it is assumed that sound travels along straight rays. Then the sound field may be decomposed
into three principle regions. Region I, called the geometric shadow, receives none of the incident sound
and is completely silent. The sonified region, that is, the region in which sound can be received along
straight rays from the source, consistsof two subregions. Within region II sound is received only from
the incident plane wave. Region Il, however, receives not only direct radiation from the incident plane
wave but also sound which is reflected from the lower half of the screen.

This description is mathematically discontinuous across both the shadow boundary and the reflected
edge ray. Thus, the geometric acoustic solution exhibits discrete jumps which are unacceptable physically
and theoretically. The complete solution requires an additional wave field called the "diffracted wave"
which provides a smooth transition between all of the regions and makes for a solution which is continuous
everywhere. The table at the bottom of Figure 3 summarizes the wave constituents in these three regions.

The exact mathematical solution of this diffraction problem is shown in Figure 4, see references 2
and 4. The origin of the polar coordinates (r, 0) of the observer is at the edge of the half plane.
k = w/c is the wave number of the incident wave in which (,, is the angular frequency and c is the speed of
sound. The mathematical expression is a solution of the wave equation whose normal derivative vanishes at
the surface of the half plane and which represents the prescribed incident plane wave. The function o(x)
is called a Fresnel integral. These functions appear in many diffraction problems involving sharp edges.
Because of their frequent occurrance in wave propagation problems they have been extensively tabulated
and computational subroutines have been devised for evaluating them accurately on high speed computing
machines. By replacing the Fresnel integrals by their approximations for very large values of kr one
recovers precisely the geometric acoustic solution to this problem.

A calculation of the mean square pressure in the sound field is shown in Figure 5. The calculation
is for a normally incident sound wave as indicated in the sketch. The calculation is made along an arc
defined by kr 61 which corresponds to a radial distance equal to three times the wavelength of the inci-
dent sound. The three regions described in Figure 3 are indicated at the top of the plot. For reference
it is useful to note the square of the pressure in the incident wave field is unity. The intensity Is
very low but nonzero in the shadow region. As one crosses the shadow boundary into the sonified regi,
the intensity increases smoothly, overshoots the intensity in the incident wave, and then settles down
after several oscillations to the incident wave value. Well into region II1 the intensity is characterized
by a number of large oscillations which are caused by the constructive and destructive interference between
the incident wave and waves reflected from the screen. The intensity maxima and minima occur at the
same angles as though the half plane was infinitely large in both directions.

SOLUTION METHODS FOR DIFFRACTION PROBLEMS

Obtaining a solution to the inhomogeneous wave equation which satisfies the appropriate auxiliary
conditions for complex shapes end general source distributions over a wide range of frequencies is an
extremely difficult problem for which there is no single comprehensive method. Diffraction theory is a
highly mathematical theory which is rich in subtle detail and great ingenuity. Solution methods include
for example the Kirchhoff approximation, integral equacion formulations, function theoretic methods,
series expansions, variational formulations, and ray theories. In this paper two solution techniques will
be briefly described which are suitable for fairly broad classes of diffraction problems: The series
method, which provides exact solutions for cartain standard geometric shapes in the form of infinite
series; and geometric theory, which gives an approximate solution for quite general shapes at high fre-
quencies. The details of these two methods will be illustrated for the diffraction of a plane wave by a
rigid circular cylinder.

Series Solution Method - Consider the two-dimensional problem of the diffraction of an incident plane
wave by a rigid circular cylinder of radius a as indicated in Figure 6, reference 4. The velocity
potential € must be a solutioa of the homogeneous Helmholtz equation which represents an incoming plane
wave and a system of outgoing scattered waves whose combination satisfies the boundary condition that the
normai acoustic velocity at the surface of the cylinder vanishes. A time factor e

-I
E will be used in this

paper.

The velocity potential s 4s represented as the sum of two potentials:, , corresponding to the incident
plane wave and ts, the scattered potential, corresponding to the sum of all reflected and diffracted waves.
Choosing the plane wave to be incident on the cylinder from the negative x direction ¢i takes the form
shown in Figure 6 in which c0 = I and E2 = c3 = ... = 2. An appropriate form for is given by the series
at the bottom of the figure in which the An's are undetermined coefficients. Each ierm in this infinite
series is a solution of the wave equation which is finite and continuous everywhere outside of the cylinder
and which represents sound waves radiating away from the cylinder. The sum 0i + s satisfies all the con-
ditions of the problem with the exception of the surface boundary condition on the cylinder.

The complete expression for € is shown in Figure 7. The unknown coefficients An are now determined by
applying the boundary condition to this series expression. This leads to the requirement that the Fourier
series in 0 be equal to zero which requires that each coefficient of the series be equal to zero. The
final equation for An is shown in the middle of Figure 7.

By substituting these values for the An's back into the series expression for 0, one has the complete
solution to the diffraction problem. The acoustic pressures and velocities can be calculated at any point
within the wave field by evaluating the appropriate infinite series expressions. The infinite series is a
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useful means for obtaining the numerical values of the solution for small values of ka but converges very
slowly and requires many terms when ka is large, that is when the wavelength is much shorter than the
cylinder radius. In the acoustic far field the series for the scattered pressure can be approximated as ,,
shown at the bottom of Figure 7. M -3

Some calculations of the mean square pressure in t e scattered wave obtained from this series are
shown in Figure 8. The sketches are polar plots of IPI for values of ka = 1, 3, and 5. These calcula-
tions were made using a maximvm of 30 terms in the series which was found to be sufficient for values of
ka as high as 10. The origin of each polar plot, indicated by the heavy black dot in the center of each
sketch, corresponds to the center of the cylinder. For values of ka less than 1, there is considerable
backscatter from the cylinder in the direction of the incoming plane wave and relatively little sound
scattered in the forward direction. As ka increases, there is a tendency for the scattered wave to be
beamed in the forward direction with a decrease, but a growing number of lobes, in the relative amplitude
of the back scattered field.

Geometric Theory - A wave theory solution requires solving the wave equation. Numerous methods have
been devised for finding wave solutions, but thesr methods generally only apply to simple geometries and
are not always useful for practical applications. Keller, reference 5, introduced the geometric theory
of diffraction for solving approximately problems of wave propagation. The method is intended to apply
to high frequency waves, or, more precisely, to problems in which the wavelength X is small compared to
the dimensions of the scattering body. In many practical cases it has been found that the method also
gives useful results down to frequencies for which X is comparable to scatter dimensions. An important
advantage of the geometrical theory is that it does not depend upon the separation of variables or any
similar analytical procedure. The shapes of objects to which it can be applied are quite general.

The basic idea of the theory is that short acoustic waves propagate along straight rays as in geometri-
cal optics. However, the theory introduces new kinds of rays called "diffracted" rays. In applying the
geometric theory of diffraction the field at a point is calculated from the sum of fields from all the
geometrical acoustics rays, i.e., the direct and reflected rays, and all the diffracted rays. The solution
of the problem of the diffraction of a plane wave by a circular cylinder in two-dimension will now be
derived using the geometric theory.

First, it is necessary to calculate the wave field produced by the reflection of the incident plane
wave from the cylinder, see Figure 9. The notation of the proceeding section of the paper is used. Let
Pr(O) denote the reflected field at a point 0. One determines the amplitude Ar and the phase ; of this
wave as follows. The amplitude of the reflected wave is determined by the conservation of energy along
the incident and reflected rays at noint 0'. That is, the energy flux in the tube of rays incident upon
and reflected from this point must the same at all points along the tube. The energy density along the
tube is inversely proportional to the cross-sectional area of the tube, which can be determined from the
Jacobian of the transformation between the physical variables (xy)and the ray variables s and F. The (x, y)
phase 0 is assumed to be a linear function of the distance s along the reflected ray. The constant so is
determined by requiring that the phase of the reflected pressure at 0' be identical to the phase of the
incident pressure there. The final expression for the reflected pressure is shown at the bottom of
Fiqure 9 where it has been simplified for an observer in the acoustic far field. In the geometric shadow
Pr(O) = 0 since there are no reflected rays there.

It is now necessary to calculate the diffracted field induced by the cylinder. The result of this
calculation is shown in Figure 10. Behind this calculation is significant extension of classical geometri-
cal acoustics introduced by Keller who postulates that there exists a class of diffracted rays which
account for the phenomena of diffraction. These rays are produced when incident rays hit edges or corners
of the scattering surface or when the incident ray impinges tangentially upon a smooth curved surface.
Some of the diffracted rays penetrate into the shadow regions and describe the diffracted field there.
Other rays modify the field in the sonified regions. The value of the field on a diffracted ray is
obtained by multiplying the field on the incident ray at the point of diffraction of a so called "diffrdction
cocfficient." Diffraction coefficients are determined entirely by the local properties of the field and
the boundary in the immediate neighborhood at the point of diffraction and hence may be determined from
the solution of simple boundary value problems having these local properties.

For the cylinder, diffracted rays emanate tangentially from all points of the cylinder surface. These
rays are produced by "creeping" waves or surface waves which appear to oriqinate at points 01 and 02 on
the upper and lower surface of the cylinder. These waves encircle the cylinder in both directions and
continuously radiate energy so that they steadily decay as they propagate. The series for the diffracted
pressure may be interpreted as the sum of infinitely many creeping waves. The various orders of creeping
waves are determined by the number of times tne wave has encircled the cylinder. The complete solution is
therefore given by Pi(O) + Pr() + Pd(O) which enables one to calculate the field at any point which
does not lie on a caustic or a shadow boundary.

The expression developed in Figures 9 and 10 will now be used to calculate the diffraction of a plane
wave by a cylinder. The amplitude of the field divided by the amplitude of the incident field is plotted
along the x-axis for ka = 10 in Figure 11. The solid curve is computed using the series method from the
preceding section of the paper. The dot points are just the solution from the geometrical theory of dif-
fraction. (Noted that Pr 

= 
0 in the forward direction) The comparison is seen to be quite acceptable.

The remainder of this paper will consider four problems in applied acoustics in which diffraction
phenomena play a central role. The two solution methods just described have been used t, obtain theoretical
insight into these ,)roblems.

DIFFRACTION BY PRESSURE GRADIENT MICROPHONES

A photograph of a pressure gradient microphone and a sketch indicating its operation are shown in
Figure 12. The type of microphone shown in the photograph has the shape of a thick di^: of diameter about
2.36 cm. The purpose of this pressure sensor is to measure the pressure gradient in an incident wave field
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as indicated in the sketch at the right. The microphone consists of two pressure sensitive elements
separated by a distance AZ. The pressure cradient at the center of the microphone 0, is then given
approximately by the ratio (PT - PB)/AZ in which PT and P6 are the pressures measured on the top and
bottom sides of the microphone. The actual pressures measured on the surfaces of the pressure gradient
microphone will not be the desired free-field pressures because of dlffractio,a effeLts. The scattering
factor o defined at the bottom of the figure is a measure of the degree to which the measured pressure
difference divided by the microphone thickness approximates the true free-field pressure gradient and is
therefore a figure of merit for the operation of a pressu'e gradient microphone. An analytical and
experimental investigation was undertaken in order to detemfne an optimal shape which would minimize
diffraction effects.

In order to assess the effects of microphone shape upon the measured surface pressures and thereby
determine shapes which introduce minimum distortion one needs a validated analytical procedure for pre-
dicting the surface pressures on a variety of microphone shapes. fhe shape of the pressure gradient micro-
phone In Figure 12 can be approximated as an oblate spheroid. The wave equation is seoarable in oblate
spheroieal coordinates and the diffraction of p.3ne waves oy such a spheroid can be solved using the
series Piethod described earsier in this paper, reterence 6. Some coordinate lines for oblate spheroidal
coordinates (C, ij) are shown In Figure 13. The curves = constant are ellipses which generate oblate
spheroids when rotated about the Z axis. The curves n constant are hyperbolas. Compared to polar
coordinates, the coordinate & varies from the surface of the spheroid into the acoustic far field analogous
to the radial coordinate r whereas n varies around the spheroid analogous to the angular coordinate e. As
a matter of reference the coordinate n decreases from +1 on the positive Z axis to 0 in the mid-plane of
the spheroid to -1 on the negative Z axis.

The equation for calculating surface pres~ires at any point n on the surface of an oblate spheroid
&l due to an incident plane wave travelir.g in the negative Z direction is shown in the bottom of

Figure 13. The series converges rapidly eggvgh to be conveniently evaluated by computer for values of
ka 10. The functions Son(-ika, ?) and R~n( -ika, i~l) are oblate spheroidal wave functions.

In order to determine the accuracy of the series solution for predicting surface pressures an experi-
mental investigation of the diffraction of a plane wave by an oblate spheroid was conducted in an anechoic
chamber. The spheroid used in the test had a major diameter of 25.4 cm and a thickness of 8.08 cm which
corresponds to a value &I 

= 
.336. The details of these measurements and a description of the experiment

are given in reference 6. The spheroid was instrumented with seven surface pressure gauges on one side
which were used to map the surface pressures in detail on both the sonified and shadow sides of the
spheroid. The incident wave was generated by a loud speaker placed at a distance of 3.5 m from the center
of the spheroid. Figure 14 shows a comparison between measured and predicted values of the ratiolPs/Pil
for several values of ka. PS is the surface pressure at a point on the spheroid and P. is the free-field
pressure at the same point in the absence of the spheroid. At ka = 0.43 the pressure distribution around
the spheroid is nuite uniform varying only slightly from that in the incident wave. At ka = 2.0 con-
structive interference more than doubles the pressure in the center of the top side of the spheroid, and
a shadow begins to form on the bottom side. At ka = 7.5 a large region of uniform oressure doubling
extends on the top side of the surface and a more distinct and widespread shadow region characterized by
pressures less than those in the incident wave begins to spread over the bottom side. The overall agree-
ment between theory and experiment is quite good over this range of ka values. One can now proceed to
apply the theory to calculating surface pressures and evaluating the scattering factor for a family of
spheroidal shapes with confidence.

The results of such a parameter study are shown in Figure 15. The parameter E1 was varied from, 0 to
I producing a family of oblate spheroids. The value &, 

= 
0 corresponds to a flat thin disc whereas l I

corresponds to a sphere. The scattering factor measures the extent to which the finite difference approxi-
mation using measured surface pressures app,'oximates the desired free-field pressure gradient at the center
of the spheroid. The smaller the magnitude of the scattering factor the better the approximation. The
criterion chosen to identify an optimum shape is:, jI , 1 over the largest possible range of the frequency
parameter F. It can be seen from the figure that for the four shapes shown the spheroid corresponding to
FI 

= 
.826 is the best shape allowing measurement up to a value of the frequency parameter of 1.7. An

extension of these optimum shape studies to bodies of more general shapes has been carried out in reference 7
using a finite element technique.

WING SHIELDING OF AIRCRAFT ENGINE NOISE

One method for reducing the aircraft noise received by the airport community during landing approach
ad takeoff operations is to place the aircraft engine above the wing. Observers on the ground may thereby
be shielded from the direct radiation of some engine noise by the presence of the wing surface. Three
current engine over-the-wing aircraft ronfgurationE for which wirg shielding may reduce comaunity noise
are shown in Figure 16. The QSRA is a NASA research aircraft. The YC-14 is a STOL transport designed for
military use by the Boeing Commercial Aircraft Company. The jet engine exhaust close to the nozzle is then
above the wing wlich tends to block off the downward radiation of jet noise froir, this part of the flow.
The VFW-614 has its two engines mounted completely above the wing on pylons. The engine inlet is placed
about over the mid-chord of the wing resultl,ig, one would expect, in some shielding of ground observers
from the forward radiated turbomachinery noise.

An experiment to measure the potential shielding effects of an aircraft wing was reported in refer-
ence 8. The test model and test arrangement are shown in Figure 17. The model consisted of a simulated
wing and flap system having a chord-length of about 0.37 meters. The wing was very long in the span-wise
direction, so as to simulate a two-dimensional arrangement. The noise source was a broadband point source

.-,. Iplaced at two positions above the wing, at 20 pqrcent and 50 percent chord. Measurements of the diffracted
sound field were made at increments of 0 from 200 to 160* below the w;ng as indicated in the sketch at
the right of the figure. The measurements, made along an arc of radius 0.f.3 meters were taken in one-third
octave bands at frequencies from 800 to 10,000 Hz. The neasurements were made both with and without the
wing in place and the results subtracted to obtain a change in sound pressure level, ASPL, due to the



presence of the wing in the field of the point source. A positive ASPL indicates the decrease in the
measured sound pressure level due to the shielding produced by the wing.

Measurements of the wing shielding effect are shown in Figures 18 and 19. Figure 18 shows the dif-
ference in the shielding effect for the two different source positior.s at a frequency of 800 liz. The
shielding effect for position II, which is at the mid-chord location, is symmetric about 90. Although
there is a 5 dB shielding directly beneath the wing the maximum shielding effect, about 14 dB, occur-
symmetrically ahead of and behind the overhead position at angles of 6Wand 120". The shielding effect
produced for the source at position I is unsymmetric about 90°. The maximum shielding of about 13 dB is
seen to occur at about W0. These directivity patterns come abou as a result of the constructive and
destructive interference which resuits from the superposition of waves diffractid around the leading ard
trailing edges of the airfoil. The results of the figure show that achievi;og a desited shieldling effect
requires properly locating the wing relative to the noise source.

Figure 19 shows measurements of the wing shielding effect for source position It for fr2qnlencies of
800, 1600, and 5,000 Hz. In general, as the frequency increases the &mount of shielding obtained below
the wing increases. As frequency increases, the shadow pror(uced under the wing intensifies and for these
experiments, produces nearly 25 dB of noise ;hlelding directly below the wirg at 5000 HL.

Shielding effects are therefore seen to depend both upon source frequency end source position. Jet
engine noise is both broadband in nature and is produced in a region which extends for considerable dis-
tance downstream of the jet nozzle. It is evident, therefore, that designing for a optimum amount of
engine noise shielding will require very areful design procedures. T;ie results of a flight test program
to study shielding utilizing a delta wing tighter aircraft are reported in reference 9.

DIFFRACTION BY AN AIRCRAFT FUSELAGE

It is of practical interest to Lnow whether the diffraction of aircraft noise by the fuselage, wing
and tail surfaces must be accounted for in aircraft noise prediction. This is a difficult question to
answer since it involves multiple distributed suurces and complex geometries. The possibility of such
installation effects is suggested by the fact that the wavelengths of aircraft noise can be comparable to
or smaller than the characterlstic dimen,ions of the wing and fuselage surfaces. A preliminary analytical
study of the importance of scattering from the aircraft fuselage was conducted using a prolate spheroid
with acoustic point sources on one major axis, reference 10. The geometry and coordinate system for
this problem, are shown in Figure 20.

Several approache3 for calculating the diffracted field of a point source near a prolate spheroid are
available, see for example reference I, including the series expansion method. The method of geometric
acoustics discussed earlier in the paper was selected because of the relative simplicity of the solution.
Expressions for the sound field are obtained wnich can be quickly evaluated on a computer.

The solution 'f the diffraction problem' using geometric a. tics is given in Figure 21. A point
source is at Q on the major axis of the trolate sp.,er Id. The incidsnt velocity potential @i ,t the point
P on the surface of the sphernid is given in equation I in which 4T1 indicates the distance between points
Q and PI.

The reflected field Or at a point P along a reflected ray is given by equation 2 in which e is the
angle of incidence, gl is the radius of curvature of the spheroid in t0e plane of incidence at PI, and pp
is the radius of curvature in the plane perpendicular to the plane of i-ncidence and coittininG the rorraT
to the spheroid'at Pl. In o-Jer to calculate 4, -.sing equation 2 when Q and P are given, three computa-
tions must be xade: the reflection point P1 must be located, the angle of incidence 6 must be determined,
and finally the two -adii of curvature must be computed. The details of this process are given in refer-
ence 10.

To complete the calculation one must determine the diffracted field, Od. The diffracted fleid is
given in equation 3 in which t and n denote prolate spheroidal coorolnates of points on the spheroid
surface asjindicated in Figure 4 of reference 10, and d is the interfocal distance. The functions
fn(n) and Xn(e, 6) are defined in reference 1C. This formulation for the Jiffracted field in valid pro-
vided ka(L)2 >> 1. The complete solution for the acoustic velocity potential is:, d in the shedow region

a)
and 01 + Or + Od in the sonified relion.

Sample calculations were made of th!! diffracted sound field Tor a spheroid whlich i. the approximate
size and shape of a cormnercial aircias't fuselage and for frequencies typical of aircraft noise. Some
results of these calculations are shown in Figure 22. The value ka = 1000 correspo-ds, fnr examp'o, to a
frequency of about 3500 H% and a major axis of 30 meters. The sketches show contours of e4ual sound
pressure level en an imaginary observer plane below and parallo! to the x, y plane, see Figure 20), at
z=
y 20. The Intersection of the z axis with, this observer plane is the origin of the plots. All sou:od
pressure levels are normalized with respect to the SPL at this reference poloit.

The sketch at the top of Figure 2? shows the circles of constant SPL produced by a simple stationary
point sour , in the absence of the scattering body. The sketch at thL lowel left shows the distortion
produce' "'se contours by adding the spheroid. The source is placed at a distance equal to G.028a
aft of wid on the extension of the major axis. The sketch at the lower right shows contours for
the ci nr--lated sources on the major axis, of the spheroid. The greater distcrtion of the
equal n the case of one source is evident. The complex patterns shown here resulting
from diff. uselage are considered severe enough to warrant giving more attention to the
possible e-,., scattering of aircraft noise by the airframe.
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A comparison of the geometric acoustic solution with other experimental and numerical results is
, £ shown in Figure 23. The integral equation solution method and the details of the experiment are discussed
JAo in the lecture entitled, "Acoustic Scattering from an Elliptic Body" by L. Maestrello and A. Bayliss in

this lecture sories. The calculations are for a value ka = 164 which is considered sufficiently large for
the geometrical theory to be applicable. The comparison with the more exact solution of Bayliss and the
experimental data of Maestrello is seen to be quite acceptable except at small angles within the geometri-
cal shadow region.

TRAILING EDGE NOISE RADIATION

Trailing edge noise is a freouently occurring source of aircraft noise which has been found for
instance on the STOL, VTOL, and CTOL configurations shown in Figure 24. Trailing edge noise is an aero-
dynamic noise source caused by the turbulent flow shed off the trailing edges of wings, flaps, or rotating
blades. The readjustment process which the flow makes as it transitions from being constrained by a
surface to being a f'ee shear flow results in the radiation of noise. The turbulent flow may be either
a boundary layer flow or a wall jet flow. Thus, trailing edge noise has been encountered in connection
with blown flaps used for t!e generation of powered lift, wings and flaps, from which it is a source of
airframe noise, and rotating bladns for which it is a broaaband noise source.

The currently accepted theory of trailing edge noise generation is shown in Figure 25. see reference
11. The airfoil is idealized as a semi-infinite flat rigid surface in a uniform stream, Uu, parallel to
the plat,. A boundLry layer flow develops over the upper and lower surfaces. A typical turbulent eddy in
the flow field, with vorticity of W, travels downstream parallel to the plate at a velocity V. As this
eddy passes across the trailing edge of the plate a counterrotating eddy is generated with a circulation
il which then proceeds to travel downstream at the velocity 9. The vorticity f of the induced eddy is
determined by the condition imposed upon the flow field at the trailing edge of the plate. Two extreme
conditions have beer considered:, a full Kutta condition, which stipulates that there will be no pressure
difference across the plate at the trailing edge and the contrary condition in which no vorticity at all
is shed into the wake in which case the pressure difference at the trailing edge of the plate becomes
infinite.

The pa,'tial differential equation governing the generation and propagation of sound by turbulent
trailing edge eddies is shown in the center of Figure 25. The equation consists of a convective wave
operator which describes the propagation of sound through the externally moving medium and an inhomogeneous
term on the right hand side of the equation which is responsible for the generation of sound by the eddies.
The two vectors Z x V and 5 x 9 each lie in the plane of the sketch normal to the plate. These vectors
play the role of externally applied body forces in the turbulent fluid surrounding the trailing edge which
act normal to the trailing edge. Thus, the trailing edge noise source may be interpreted as a distribution
of dipoles in the wake whose strength is related to the vorticity in the fluid and the convection speed of
the turbulent eddies. In the formulation of this theory it was fourd to be convenient to use as the
principal acoustic variable the stagnation enthalpy 3 in the flow field which is related to the far-field
acuustic pressure as indicated in the equation at the bottom of the figure in which No is the component
of the free stream tlach number in the direction of the observer. On the plate the normal derivative of B
vanishes.

rrailing edge noise is generated then by dipole, located near the trailing edge of the plate and normal
to the plane of the plate. Because of the presence of the plate the directivity pattern of a trailing edqe
d~pole will be different than that of a free-field dipole as a result of acoustic diffraction phenomenon.
The directivIty ol a trailing edge dipole is shown In Figure 26. The angles o and 0 defining the observer
position are chown in the sketch. The mean square pressure in the acoustic far field is proportional to

on o sin2  
. Several cross sections through the radiation pattern of such a baffled dipole are shown in

the sketches at the bottom of the figure. This J'pole has its maximum radiation amplitude in the plane of
the plate in contr: .1 to the radiation from the free-field dipole which achieves its maximum along the axis
of the applied foece and has no radiation perpendicular to the force axis. The theory predicts that the
amplitude of the mean sqdare pressure depends upon the boundary conditions imposed at the trailing edge.

A comparison between measured and predicted directivity patterns of trailing edge noise, taken from
refcrence 12, is shown in Figure 27. The trailing edge noise was produced by placing a thin plate in a
Jet exhaust as indicated by the sketch in the middle of the figure. Measurements of the radiated noise
were then taken in narrow bands at the six frequencies between 100 and 3,000 Hz. Note that the dB levels
on the upper and lower halves of the figure are different. There is a consistent and appreciable decrease
in amplitude with increasing frequency. At any frequency there is a clear tendency for the radiated noise
to peak in the upstream direction, as predicted by the theory. This type of evidence supports the general
correctness of the theoretical prediction of trailing edge noise radiation. The additional diffraction
which may be expected from the leading edge of a plate of finite length is discussed in references 12 and
13.

CONCLUDING REMARKS

This paper has provided an introduction to the concepts and methods of diffraction theory and has
prfsente- several examples of diffraction phenomena arising in the study of aircaft noise. It has been
shown how the diffraction theory was dsed to select the shape of a microphone so as to extend its usefulness
over tne widest possible freouency range. Experiments on wing shielding of engine noise show the potential
for considerable reduction ot the corr.nity noise through proper engine placement. The scattering of sound
fro an aircraft fuselage was studied usinq a geometrical theory of diffraction. Severe distortions of
equal sound pressure level contours were observed suggesting that the scattering of noise from the airframe
deserves rore attention. Experiments and theory on trailing edge noise Indicate that the diffracting
effect of the wing explains the unisual rardioid radiation pattern of this noise source. The need for• ... o •2 .more tuepowerfuleetheoretical rmetnods to c,-.lculalte dif'fraction phenomena for compley shapes and broadband

distributed sejrces I, clear.
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RANDOM PROPAGATION AND RANDOM SCATTERING
C. Gazanhes, Maitre de Recherche

Department of Acoustics, C.N.R.S., Marseille, France

SUMMARY

Acoustic wave prepagdtion through atmosphere (or
ocean) undergoes amplitude and phase fluctuations becausu the
ran3om inature of the medium.

The purpose of this course is to provide a review of
the principal methods : geometrical optics, crn approxima-
tion, Rytov method, parabolic equation , .... which allow us
to treat the random propagation problems.

Finally we consider the case of the scattering by a
cloud of random scatters.

INTRODUCTION

The random nature (in space and time) of real media (atmosphere, ocean) has a
strong influence on the propagation of acoustic waves. In particular, it produces ampli-
tud and phase fluctuations of the received signals. In the case of a long range propaga-
tion, because of a cummulated effect, these fluctuations can become very important even
if the medium fluctuations are weak.

Depending- the fluctuations 3cale, two points of view /I/ can be distinguished.
First, the macroscopic point of view, where one essimilates the medium to a continuous
random medium, of which the properties vary in funccion of time and space. Second, the
microscopic point of view where we assimilate the medium to a random medium containing
randomly distributed szatterers. We are going to study these two points of vtew in the
following chapters.

1. PROPAGATION IN RANDOM MEDIA

1.1. Description of the medium

In the hypotheses of a temporal harmonic dependance, the simplest equation
which governs the waves propagation is the Helmholtz's equation

(**)ALM7 + W) 0

r specifies the space coordinates
k represents the wave number in free space

n(r,)) is a random function which describes the properties of the medium (for
example, the index of refraction).

We suppose = -+(<4i

and for an homogeneous end stationary medium, we writo

E0 (Avrage value)

EW -)j (Variance),

where P *..r
To fit the experimental results, we choose an analytic model for C(p). For ins-

tance an exponential model

i0

or a Gaussian model; e . L
i V

+ ./



is the correlation length of the refractive index.

13o-- We schematise the medium fluctuations by blobs the dimensions c which would be
approximately .

For - sound wave of hight frequency each diffusing blob reacts as a lens of an
angular opening ?k/t . The energy is diffused in a cone in which the angle at the vertex
would be centered on the receiver. If L is the, wave path length in the medium, the maximal
opening of the diffusion cone takes the value L Alt

W ow have to consider the two following situations

a) TL 4t 0  diffraction effects can be ignored (Figure 1a) this cor-

responds to ray propagation and the geometrical optics-approach can be used.

b) 7Li . 0  diffraction effects become impnrtant and it is necessary

to solve the waves equation. (figure ib)

The piobles is more complex, because there are a number of many possible values
for 2(, . For example in the atmosphere, (Figure 2) shows a turbulant spectrum traced in
function of the wave number k 2 n/.

I I SM
.5J M

Figure 2

Figures la - lb

We distinguish three regions delimitec by the wave numbers ko and km.

a) O < k < Vo

In this range the turbulence (wind or convection streams) is created, the
turbulent blobs are large (100 meters). The turbulence is anisotropic is called
the outer scale of turbulence.

b) ' 0 < V, < 'XK

This range is characterized by the progressive subdivision of blobs, the energy
is transferred to the smaller and smaller blobs. The turbulence is isotropic.

C' k > VVV
Fro , a crzain vtlue 2< -- [ ""  the energy loss by viscosity becomes

prepondernt, could be of che vrder of milimetars. In the atmsphere che bloos are
the most stable.

1.2. Geometrica[otcmto

This method is only valid in the high freqaercies domain wit!, the condition

<< to -We then consider a iay propagation and the scalar wave equdtion has an
asymptotic solution in the form :,.:,U (F A(7 .

VI- • , , •

I . .. :



Where A(r) is the amplitude and S(r) the phase of the wave. It satisfies the Elkonal
equation. 95 )3-3

(1-2)

The surfaces S = Cte are the wave front and orthogonal curves to these surfaces are the

rays. In random medium, the equation (1-2) can be written

where s is the path along the ray. Chernov /2/ shows that the mean square lateral displa-

cement of a ray is in the form : 23t

For a weak random medium, we can consider that the rays are only slightly deviated, from

the propagation directic-i ox. Chernov /2/ shows than that the phase fluctuations take

the value :

(1-3) =2 ~2 LSC (OcO 0 L
and the logarithmic amplitude fluctuations

(1-4) 2  L3/P03T

1.3. Born' s approximation

The geometrical optic doesn't allow us to take into account the diffraction problems.
"o introduce the diffraction we can resolve the equation (1-1) in developing the solution
u(r- in perturbationseries in the form /3/.

The equation (1-1) can be written: -1- . JO 4- +3 -U2 ---

(1-5) YO, 4!l)IJP -U

after writing: SP)= (--I --4 .2p+ VI

A general solution (1-5) is given by the integral equation

6 TJ(F) =->- 4o f) -) Ui) JN'
- .

r locates the receiver and r' the scatterint volume V'. Ijo (rr is the field in the
abscence of fluctuation ( O)and &(i -;P)is the Green function fo the free space.

(1-7) r r .e

The Born approximation consists of replacing U(r') by u ( in the equation (1-6)
We then get the solution of Born which is an approximation o' 

single scattering.

Let us now calculate the mean scattered intensity, in the far field conditions.
We choose the origine of the coordinates at the center of the scattering volume. The Green
function (1-7) is then given by 0 -0.

4+-nlirl

where k =

represents the scattered wave number. For an incident plane wave defined by i D

Frish /I/ derives the mean scattered intensity in the form:

j :'.., A::

_______"_______,L
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if

and

(1-14) <

The equation (1-11) can be written

which is the inhomogeneous wave equation, the solution of which can be written

(1o6 w___) =2

By iteration we obtain the general solution. For the first iteration we choose the value

L{ 0 0 in the integral and we get :

(117 ~ (I'-r) =j G-O
40

This is the first solution of Rytov. Hence : -v'

(1-18) U(r) lJ0( ) -e U0(i') JV
which gives the Born approximation for the weak variations of the signal.

Let us write : "C i()

if

We can see that the real part , = o Lo 0JL

of represents the fluctuations of the logarithmic amplitude A.

It seems that the Rytov method doesn't apply any longer when the propagation
distances become greater (approximatively one kilometer). de then verify a very clear
divergence between the experimental and theoretical results. The method known as the
parabolic equation allows us to go further.

1.5. The Parabolic Equation

We obtain it from th.3 wave equation (1-1) by looking for a solution in the
form of /6/.

We then obtain the equation

(1-20) AL.i + 4 2. )M(1 ") = +

D0

• , 5/
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In the case of a propagation following o x.

if u(. is a function, slightly variable to x and if X < (correlation
of index) we have

In these conlitions we can substitute for the Laplacian A the transverse
Laplacian A -2 2.

We then obtain the simplified equation

%'2*(1-21) + Avi' 0 ~'

This equation is only valid Jn the approximation of sliLqhtly inclined rays from

* the propagation direction x.

R.H. Clark /7/ proposes to resolve the equation (1-21) in a way similar to the
proceeding one. He considers two separated steps

In the first step, we sappose an homogeneous medium such ds p - 0 and in the
half plan x > 0 we represent the acoustic field by the integral

(1-22) 0 =J e6

where s = sin O and c =cos 0

F(s) represents the plane waves spectrum of U (Yx).

We have :

(1-23) -C =CozG ''~.. Lp

and we can write the fietd in a plane located Ct Ax from the origin

(1-24) Z cF _ .LkAx J

In the second steer we look for a solution of the parabolic equatio.., supposing
that the medium is 3lightly heterogeneous. We then neglect the second order derivative
in such a way that in (1-21).

The solution of the first order differential equation that remains can be written
asA

(1-25) AL. 0)s etk 0U

In these condltion the mediun, s divided into nomogrneous sabs at the same
width Ax (Fic.ure 5), but the r-fiactive index can be different fr t, )ne slab to another.

A (y,o) reprecents the distribution of the acoustic Zield on t',e plane x = 0

),L(y,t. .,x) represents the same distribution on thi p.ane x = Ax

afiected by tte phase shift introduced by propajation alor.g a ray of lengh Ax.
To finJsj, we combine the two types cf solution (I-24, and (1-25) by writing

(2 /
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in which U is the s.olution corresponding to

the homogeeous medium. (1-2 ) allows us to
pass from the plan x - x to the next one
x 2 ix and so on.

,, The first t--pe of solution (I-Z4) takes

into account the diffraction eff~cts. The second

' i ,'kty' of solution (1-25) takes into account
the random irrejularities of the medium.

"41 /2. THE MULTIPLE SCATTERING

iI ( /2.1 Fuiudamental equationsC) 1  Let a volume V containing N particles

located at points r1, r2, rj, rN.

X_ Let us consider an observatio, point A
and let ip be the acoustic field at this

Figure 5 point. (Figure 6).

it verified the wave equation

where ko = 21/I is the wave number in the medium surrounding the scatters. Let us call

41O the incident field at the point A, in absence of scatterers and Flr,rj) the wave

scattered by the 3jime scatterer at the point A. The total field will be und r the

form (Figure 7a).

The scat',red wave F(rr) cah be expressed by the means of the incident wave P

on the scatterer and the scatte ing coefficientU.(r.,r) characteiises the scatter,-r.

Te wave transmitted by the ji~me scatterer can J 3 then be written

(2-3) F"

It is important to notice tian (2-3) is a symboli., writ.Ing which represents a

product only with an incident plane wave. In these conditions

Y.ej~

and when the distance between r. and r is large we have (Fig,:e 7by

(2-4) -

( (rj) is the scattering pattern of the considered scatter.

The wave impinging on the scatterer j !s then the sum on the incident wave

o (r3) and the waves scattered by all rho other scatterer.? different from the scatterer

j (Figure 7c).

We can write

(2-5) +-i =X A-)~ i ~. ).

The equations (2-2) ard (2-5) are the fundamental eque.ions of the mult.ple
scattering /9 - 10 - 5/

.....................,,.. ,,- ', .,.'I
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Let us write against

For a-given incident wave -P( ) one can eliminate (r) and calculate the resul-i
tant wave (71. (

By successive iteration, we obtain the series

A

g r

'a) -U- ') r ,, ' "o!

+ o .(2-7)

zz

where the successive tcrrx represent the incident wave and s'ng~e, double, trle

scetterinq waves. (Figure 8).

_________I /.
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2.2. Randomly distributed scatterers

1 -10/O A random distribution of N scatterers c.ntained in a volume V can be des-
cribed by a multiple probability density in the form

2 -8 ) ( 'r . , r s , . . r ;N 4

r3 is the position of the particle j characterised by a bcattering parameter s.. If the
scatterers are not correlated, the probability density (2-8) is written 3

(2-9 :_ N. .s

a 2.3. Average acoustic field

~In these conditions L.L. Foidy /9/ shows that the average acoustic field
scattered by a -,et of N scatterers can be writte,. : (average value of 2-2).

~with
(21)< 1B",ijG r< ") E~,' ~

whe,'e ncr,s) is the average number of scatterers per unit volume in the neighbourhood of
the point r having the scattering parameter lyina between s and s + ds.

The eoua-io. (2-,0) is the solution of the heterogeneous equation

or again

(2-13) c v, + 4 G

The -ear ,alue I P(r)> sati.sfies the general wave equation. The results (2-12) and
(2-13) can oe compared to (-5) and (1-6).
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uINDERWATER ACOUSTIC PROBLEMS
C.Gazanhes, Maitre de Recherche,

nepartment of Acoustics, C.N.R.S., Marseille, France

SUMMARY

The acoustic study of underwater medium is very complex. The
bat.!, principles which give a simplified approach to the problem
are reviewed,

In the first part, %,e give a static description of the medium
and we define the transmission loss.

In the second part ve consider the propagation problems from
:ay and mode concepts view point.

Finally we discuss some effects that fluctuations of the
medium has on acoustical transmission.

INTRODUCTION
Among the studies connected with oceanography, underwater acoustics is becoming

more and more important because only the acoustic waves propeqate well through the sea.
Like the atmosphere, the sea is essentially a heterogeneous medum. It is characterised
by parameters which differ from one point to an other. (sound velocity, abcorption, ...)
It contains many inhomogeneit!'-s. (tiny suspected particles, ga% bu)b:es, shoals of
fish ...) which scatter acoustic waves.

We also hae to take into anount the presence cf close boundaries (surface and bot-
tom) and the fluctuiting nature of some parameters with time that cause distortion and
fluctuation of the received signal,

The internal structure of the ocean and of the atmosphere present notable analogies.
Comparaison between records obteined by using echo-sounders in the ocean and in the atmos-
phere, is enough to convince us.

Since world-war I the field of applications of underwater acoustics has not stopped
developping. Let u3 quote some examples

- Echo-sounder, navigation sonar
- Underwater telecommunicaticn, telemetry, telemesures
- Off-shore petroleum research ard exploitation
- Sediments and inderwater bottom study
• Studies of gravity waves, currents, microstructure of ocean etc ...

1. STATIC DESCRIPTION OF UNDERWATER MEDIUM

1.1. The velocity profile
The acoustic waves velocity is an essential parameter for propagation calcula-

tions. In underwater medium it varies in space and it depends on temperature, salinity
ar.d hydrostatic pressure. Temperature plays an essential role in velocity variations. If
in normal conditions, sound velocity is at the average of 1500 ms-1 , different relations
have been proposed to express it in function of Ysic quantities ; temperature 0, salini-
ty s, anddepth d. For example, between 6-17' C, we can a ))y the relation

,) 0 (410 + 4 2 4 0- oo 3 7 19 + 4 ,4 + 1

for a temperature variation of 100 C, the relation gives a velocity variation o. 3843 car
1 .

Usually, one plots velocity variations, in function of the depth, on a diagram called
velocity profile (Figure 1).

Generally we distinguish 3 prin.cJ,al regions

- The region of the thin mixeA layer where the temperature is pratically const.nt.
- The main thermocline region where the temperature and the velocity, quickly decrease

with depth.
- The deep isothermal layer where the temperature is constant. The velocity incroase

is only due to the hydrostatic pressure.

1.2. Transmirsion lossca
a) Absorotion of zound in sea

The intensity of plane wave which travels throuqh an absoiptive medium decrea-
ses under tte equation : I - %

where a represents the absorption coefficient of the medium. In sea water, this coefficient

is more important thar in pure water, especia)ly for low and intermediate frcquencieo,
because of the molecular relaxation of dissolved magnesium sulfate. Fiqg 'e 2 sncws a plot-
ted against frequency. At HF (> MHz) a is iery high and varies 1I e f , so these
frequencies have few applications In underwater acoustic.

One may represent the frequency dependence of the coefficient a in the form

(1-2) AT +P R~r j( ) V

7,!



where fr is the relaxation frequency in kHz.
f2. For sea water we have the following values of the parameters

A=az o" = 6.10 - 4  6 6kAz

4600 410 4516 46O1 4s m $

Zone!74 17
21000-

35 H,,-dei W
25,c 72 ~ ~ -a e a

Zone II

deptih --

'0 tO 0 0 ~ H.

Figure I Figure 2

b) Spreading loss
Let a small source of sound which transmits spheric waves, in a homogeneous,

unbounded and lossless medium. Following figure 3, if there is conservation of energy
through spheres of radius r, we have

4-TI 4  ~ 4' I2 -

the geometrical spreading loss is then / -

/ - -- -,

Figure 3

c) Transmission loss
If we now considr the absorption loss of the medium, the exp-ession (1-3)

takes the form :

(1-4)-J~

'4.

(13 Tj - . -,I

N represents the transmission loss but it is inpossible to ,efine the letation rl/,

because w we to calculate the aosses between the ource ri = u and a point situated

|at a distance r =r 2- To overcome this difficulty we can: choose a point r% at one meterorA
Sfrom the source ;in these conditions, omiting th9 ter'n r1, the trans'nission losses can

..... .....



be written

~(~1 N 20 log - + acr d//m Ic.-3

wherO a is the absorption coeffi-:ent in dBm" 1. Figure 4 gives the familv of curves re-
lative to a sphcrical wave running into sea water.

r o o 400

a) Sa suface reieio

The acoustic emissiun of a source situated close the surface is affected by
its presence. If the surface is not disturbpd, it acts as a perfect reflector and it pro-
vokes interferences between the direct emission of the source S and its image S' (figure

The receiver R receives a direct path SR .ond
a surface reflected path emanating from the
image S1 of the source S in the surface. One
shows that .2/ the combinod intensity at R

X , Srfacecan be written

I ,I ', ; I l I I I 2t~

rA
A The reflexion coefficient u depends on the

sea state surfece.

Figure 5 Figure 6 reoresents the fluctuations of 1/1a
in function of L and for different values
of U.

b) Bottom reflexion
The reelexion c,,cffici~nt on the bottom, (figure 7) is given by Rayleigh's

formula-2

where m p 2/ e t n =c I C 2. fC l&ciia ansle 6. exstj such as

-' I c, > c Iit I l

sin 0 c
L c2

For an incidence 0, 4 0 a transmission in the bottom t,~keG place and weakens the re-
fle.ted wave. o 0 > Btthe reflexion is tota, but the waves undergo a phase change

in functon of t e inciunce (figure 8). ha

5;.
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2. UNDErWATER PROPAGATION OF SOUND

2.1. Normal mode and ray propagq'on
The waves propagation in inderwater medijm is governed 'y the iave equation

where 9(x,y,z,t) specifies a quantity d-ecribig the acoustic field and c(x,y,z,t) repre-
sents the sound velocity which depends on the space coordinate and tirle.ln the particulr
case of a monochromatic wave, let

(2-2) {X,%z k Y()',I z z) subtitute in the equation (2-1) it becomes

(2-3) + k, Y z C and the propagation problem is then governed by

4 the Helmholts equation (2-3).
From that p.)int, there are two po3sibl) poir.ts of view for the equa' ion (2-3). 1

the boundaries pldy a dominant pArt, the nroblon it fle fo-lowirg
Find a function o describing the acoust'.c field at any point and an tire, '4 ich is

a solution of tha aquasxon (4-3' 0nd fits the boundary and source conditions. From the
first point of view, the general solt.tL-r. (. ,y,z) is given from a 'Let|'od of suparposition
of particulary related solutions, which aro

. 
zalled modes. t

The total field is composed of a discrete sum of pxopagation modes

(2-4) (a, Z
On the other nand, it we -orget thq, bo',ndaz'" pioblems, wc end up %,ith the second

point of view, and the propagati.,n ') Dlem looks like the scarch of paths on which the
energy is propagating, and the study of signal evotution on these poths.

For this we look f)z a solution of the ec'uation ( -3) under the form i
(2-5) , x, C,"{''whe-e A aud S denote ampltude and phate. The

surfaces of constant phase S = ct. ae the wave-front, end the orthogonale curve . to these

surfaces are the souni rays.

2.2. Ray thor~L
Let us now consider the point of vtew or t.e R;%y 'hoor,
2.2.1. Iay Equation

Let us substititi '2-5) in (2-3) and separate the real and imrqinary partsjwe get the systqm
(2-6) - +0

K the resoluteon whi-h voses ser'ous difiiculties.

.. ';i.-., '



The geometrical approximation is written

(2-8) [< so (2-6) is reduced to v (2-9)

which is known as the eikonal equation for which the condition (2-8) is equivalent to
(2-;o) £- .t

and expresses the high frequency charactei (X - 0) of the approximation or also a weak
gradient.

It meanb that we can neglect the velocity variations on a path length comparable to
the wave length.

2.2.1. Rays equatbrn
We suppose that the propagation velocity c ±s a function of the only imme;sion

z, so that we can write : c = c(z). In this case the rtys always lie irn the vertical plane
(x,z), With fixed end ponts, the rays are always paths of statlonnary time, (Fermat
principle). In these conditions, any variation 6 between two fixed end points will be
that as

(2-11) __ -0

R
and according to figure 9. R 0

(2-12) \.I21~z QA

Appliying to (2-12) the Euler - Lagrange
equation, we get I

(2-13) 4 A

L AS de

and since A- cet 0 consequently
dz o

(2-14) 0
-Cot ) .CO0 0 Fieure 9

which ts Descartes law in %hich c and 0 are the parameters at the source. The equation
(2-13) immediately givef. 0 0

(2-15) AX -4 if x = 0 and z = z are the coordinates of the

t 0

source

we take the sign + for a ray going down to the bottom and the siqn - for a ray going up
to the surfa-e, so that x is always positive. We get the tirning point of a ray when the
condition c(zm ) - y is fulfilled, therefore when dz/dx = 0.

We can easily determine the ray path in the case of a velocity linear profile.
Let c(s) - gz and substitu2ting in (2-16) it immediately becomes

if we take 0 for the conGtant, it comes

(2-17) R 2 "  -z - ()2

II
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The ray path are circles of radius :

(2-18) R - Go centered on the horizontal line of zero sound velocity.

For digital ray computation one can divide the velocity profile into horizontal layers
of constant gradient velocity. (figure 9)

Figures 10 and 11 give examples
of ray diagram in the case where thereare caustics, shadow zones and a sound S'€

channel.

2.3. Modes theory
Modes theory is often prefer- R; 9,o. I Rayons /,nnrts

red when we have to take the boundaries
into account. This problem occurs in the
propagation studies in the case of shal-
low water. In this case, the ratio
H/X water height on wave length is
small. In shallow water propagation
numerous reflexions on the surface and
on the bottom takes place. The solution Figure 10
by modes represents the waves inter- $ [f€e
ference phenomena,rays theory on the R ,'1' _"

contrary requires a certain indepen- -----
dence between the different rays.

2-3-1 Mode Interference
An omnidirectional source set

in the water transmits waves which
reflect numerous times on the surface R wA ,
and the bottom. (figure 12). At a suf-
ficiently large distance from the sour-
ce, the waves interfere and give a stan-
ding wave pattern. Only the ones which Figurte 11
interfere in a constructive way and
which propagate under incidence angles
for which the reflexion on the bottom
is theoretically equal to one, will
contribute to the field.

There is constructive interference
effects between the rays (1) and (3) if: front

(2-23) 4.-nr H co- (. -IT d ()/

where f is the emission frequency, c1
the waves velocity in water, 0 the
incidence angle and c the phase change
undergone by the waves at the reflexion (
on the bottom.

The constructive interference condi-
tion (2-23) gives us the characteris- Figure 12
tic equation

(2-24) (21'e) ?. .C.6t

The number of possible modes is determined by the number of diecrete roots of the
characteristic equation (2-24).

The graphic resolution of (2-24) is given by tracing in function of 0 the curves
corresponding to each member, for a determined frequency ; 0 varying from 0 to 1/2. The
curves take the aspect given by figure 13. The intersection points of these curves deter-
aine the real solutions 0 of the characteristic equation. The corresponding wave number
is given by n

A C.1
At each value of 0n' there is only one mode of propagation for a given frequency f and

the water height H.
In additi.on frpm the equation (2-24), we can obtain for a given frequency, the cut-

off depth of the ntn mode.

\,
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The expression (2-32) lets us calculate the acoustic field at any point of the
medium.

a) Vertical field distribution

In function of the depth of the source, the modes excitation vary ab the factor
sin(Yln d) of the expression (2-32). It varies as the factor sin(yin z) of this same

expression in function of the depth cf the receiver. Figure 14 shows for the two first
modes the evolution of the vertical distribution of the pressure amplitude in function
of the frequency.

b) Mode interference
For a given frequency, the propagation shows a vertical standing wave pattern

along the oz axis, and a mode interference pattern along the horizontal axis or. For
example a two-mode interference pattern shows successive minima and maxima which are
spaced one interference wavelength apart.

(2-33) Lt - m/ - %

Figure 15 corresponds to the case where two modes a-e present and equally excited.
The field oscillations are regular and the interference wavelenqh can be calculated
from (2-33).

Mode 1

P
12 4 00 30H 2 modes

f-aeMode 2 b N ,V

3 modes

F 40 100 too so*11,.

Figure 14 Figure 15

3. UNDERWATER MEDIUM FLUCTUATIONS

Ocean is a fluctuating medium in which the results obtained in chapter "Random scat-
tering" can be applied.

3.1. Fluctuations of sound velocity are due to the turbulence of the medium, the
water current and the small temperature fluctuations.

These fluctuations can be schematised by irreqular blobs of water of different
sound velocity. These blobs are in motion relative to each other.

In general, if (Ac)2 is the standard deviation cf the velocity fluctuations, the
relative sound velocity

is about 8 10-O0 .

We define the pressure fluctuations by the coefficient of variation

Different studies allowed to connect yv to the characteristic of the microstructure
of the medium.

For a high frequency signal received at short range r, the rays theory gives

where r is the range and I is the correlation radius of fluctuations (velocity for example).

St -
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In thiv case, the fluctu'tions of the signal are essentially due to the focusing
and defocusi.ng of the souna beam.

For a L.ow frequency signal received at long range r, the wave theory gives

with the condiion r >> kl2

* In thi; case, the fluctuations are due to the scattering by the heterogeneous struc-
ture.

3.2. Fluctuations due to the reflexion on the st'rface
Ile show /5/ that the fluctuation of the signa) reflected by the sea surfave

decreases when the signal frequency decreases and when amplitude of surface fluctuations
decreases (Figure 16).
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' UMMARY

This :,per pr:Isents two different facets of thie in',eraction of itrodynamic noise with a fuselagc
shdped booy. The ffrst problem is the effe~ct of scattering of an acoustic scurce by a body at rest.
numerical techniq.e is Dresentad which p'irmits the comptcation of this scat~rring for frequencia. of
aeroacoustic interest. A paralci' exparimapt is described which cur'firms the results of the cri.pitations.
A numer ical study of varying Meu gee--etry of the scatterir~g I& presented. fhe second !)'oblerc it' to
sir.. *,ata the efiect of lorward motion on the mean velcrlty ind static pressure profiles in the wake of
.uch a 'ody with a jet exifine, ftrm it. ':xperitoentai resl,'ts are p-esente'I ar'd a similarity la'.i is given.
Direct'icns for future re;earch it,, this field are discuspd.

I INTRDUL!Ot

This paper, is coacprned with the effect of a body on nearby aco'istic sourc;' s. The motivation fo,
*hs is the effeol. that art airplane' fuaselage ha, on the sources o,' jet noise, Pr :vlemr w-irik has Igncred'
thr effect. of tire fuseiage on farfield srrund ptteins. It will~ be setJn that t-he effect of the body is
to suo~stantl'lily alteI the fat, field acoustic pittern and that -hs negle' is rl.t juttflieJ.

The Lirrane fuselage will be modelled by an sl.'r1qa'ed ellipsoid. the acoustic olO'rces W wi! ba
.adelled by doint sources placed on the major axis T'f MJe ellipsoid.

This paper will consider static effects and simulated f.',t in an open wtrid ttrowel. The st~tic
effects will consist of measurements and numerical computation of t~e far field sc,.ttereig due ta the
bod4. A numerical technique will be discussed which will perinit the accurttte computation c? the sc,%tte.,ed
Field ut reAsonably hiqh frequencies. Experimental results will be given for ct-Iparlsor. with the nraeri-
cal methods. The a,,,ailability of in accurate numerical schpme peri~mts the study for c wider r~~p of
paraireters than could be obtained experimentally.

The forward motion effect over the body will coirsist of exrperict'-ts on the mean ve!or.1ty and -tatic
pressure profilesfor a body in a uniform flow with the point sources reriaced by a jet exiting alongj the
m~jor axis. This Is a realistic simulaticn of flight effects, however tb-' acoustic measurements and Lhe
numerical calculations, beng much more difficult than in tht: ctatic case, ar'a presently beii.j developed.

In section 11, the static effects are discussed. a.-,. iti section 111, the forward motion (ffect is
considered. In section IV, the current state of the present research is disrussed together with plant;
for future work.

11. SCATTERING BY A FUSELAGE SHAPED BODY

We consider the problem of determining the scattfrlnn by an airtn.aqe fuselmge, of t0e sound ol a jet
engine niountec on the axis and behind the body. This problem is modeled by a rigid elongated ellipsoid
(prolate spheroid) with point sources on the major axi,. (See fig. 1 and ref. 1).

0

SOURCE

Figure 1. Corunete system if the ellipsoiC and

for the farfield observation anglus.

E



The farfieid sound is a superposition of the incident field and the scattered field due to the
,t/ presence of the body. A complete treatment of this problem requires the conotation of the scattering

with a variable flow over the body. This will permit the computation of the noiso nenerated by an airplane
in soti on. Here wc consider only the case of zero flow. The case of constant flow can be reddced to 'he
case of zero flow by a Galilean transformation. A discussion of the effect of constant flow based on
geometrical optics ic given in Reference 2.

Several techniques are avAilable for the numerical computation of the scattered field. Thase are
discussed in section ll.a. After comparing these methods, it was found that for the frequencies of
interest, the integral equation method, using appropriate coordinate stretching, was best able to provide
accurate sol'tions over the Ontire farfield. This method and the stretching transfonation which is
crucial tD its success is dscussed in section II.b.

An experiment was cpnducted to ierify the accuracy of the numerical scheme. An experimental point
source was placed near the tip of a spherold with a shape that conforms to thtt of a typical airplane
foselage. The experiment Is described in section i-c. and the results are given in section l.d.
Additional numerical results for different ellipsoids a-d source configurations are presented in section
Il.e.

The principle coniclus;on Iron this research is that the scattered field is a significant component of

the acoustic far field and can not be nPglected In any realistic noise prediction scheme.

a. Equrtions and humerical Techriques

The acoustic poential will be a solution of the wave equation, which reduces to the Helmhrltz
equation

4+k 2= o (1)

in the frequency domain. Here k ;s 2v times the reciprocal wavelength. In order to work with non-
dimensional quantities we introd,ce the term ka where a is the semimajor axis. The so~utior to Eq. 1
becomes more difficult s ka increases because of the oscillatory belhavior of the solutions. For
aeroac~ustic applications, however, a is required to be large, such that tile solutions for ka > 100
will be required.

Three techniques are currently used to compute the scattered field:

(1) Expansion i- eigenfunctions,

12) Invngr=l iquation methods,

(3) Asymptotic methods.

The expatsion in eigenfunction , hhich is restricted to spccial bodies, is based on the fact that the
Helmholtz equation is separable in the prolate spheroidal coordinate system. Thus, the solution can be
written a3 an infinite seies of the eigerfunctions of the separated operators (see Ref. 3). This series
converges very slowly unless ka is smal' and thus this method is not suitable for the computAtion of
aerodcoustic scattering and will not be considered further.

The integral equation method involves solving a Fred:flm equation of the second Hind over the surface
of the scatterer. A general discussion of this methoo is given in Ref. 4 and a detailed discussion of its
application to the present problem is given in section ll.b. The numerical solution of the equation for
large values of ka can only be done efficiently if new corrdinates are introduced on the body. If done
pr3perly, accurate solutions for values of ka of interest can be obtained. fhis method was used to
generate the basi: numerizal resilts of this paper and for reasons to be described be'ow, it is believed
that this is the best of the three methods in obtaining so'utions at aeroacoustic frequencies.

SOURCE ,INCIDENT RAY

/ - REFLECTED QAY

Figure 2. Geometrical optic ray pdths and the
/ illuminated and shadow regions.

/ \
/\
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• i / SHADOW REGION \
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SOURCE-,

/ CREEPING WAVES Figure 3. Geometrical diffraction showing
the creeping waves on the body and diffracted

i/// rays.

ii ' \\

/ /

/ •/DIFFRACTED\"" REGION q

/k-SHADOVJ REGION

The third method, asymptotic expansion, includes both the conventional geometrical optics expansion
and the theory of geometrical diffraction of J. Keller (see Ref. 5).

Geometrical optics involves obtaining the solution to the scattering problem by the method of raytracing. Referring to Figure 2, the total field at the point P is found by assuming a solution of the
form

z(P) exp(ikIP - P*I) +
4nip P* ,

where Oinc is the incident wave. Here P* is the origin of the reflected wave going through P (see
Fig. 2) and z(P) is obtained through a principle of "conversion of energy" along ray tubes (see Ref. 3
for more details).

It is apparent from Figure 2 that there is a region of space where no wave can penetrate. This is
called the shadow region and the geometrical optics approximation is * = 0 in the shadow region. An
improved approximation is obtained by the theory of geometrical diffraction as described in Reference S.

Referrin to Figure 3, rays incident on the curve of tangency C, excite surface rays (also calledcreeping wave.) from which real waves are shed off tangent to the body. Analytical formulas have been
developed for these diffracted waves (see, for example, Ref. 3).

Both these expansions are valid as k - -. Geometrical optics requires ka large where (a) is thesemimajor axis. Geometric diffraction, however, is based on the radius of curvature at the tip of Jody
and requires the wavelength to be small with respect to this length scale. Since any nydel of an airplane
fuselage will be an elongated ellipsoid, this will have a relatively small radius of curvature and t'ius
geometric diffraction will have a more restricted domain of validity than geometrical optics.

Results to be presented indicate that geometric diffraction is very inaccurate at frequencies of
aeroacoustic interest. At the highest frequencies considered errors of the order of 5 dB have been found.Geometrical optics also becomes inaccurate as the far field point approaches the shadow region.
Furthermore, it is found that the effect of the scattering is strongest in and near the shadow region.
Thus, the integral equation method although more expensive than the asymptotic methods, Is the onlypresently known method able to provide accurate numerical solutions in all regions of the far field, forthe frequencies considered.

b. Numerical Scheme

The scattering problem described previously can be described mathematically as the solution to the
following problem:

a + k - 6(p - q), (2a)

0 on E, (2b)an

!- ik -(r 
(2c)arr)(2c)

/

//
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where is the "elocity potential. Here p represents the independent variables and refers to
the Laplacian with respect to the variables r. The point q is the source point and k u/c is the
wave number. The notation 3/ an represent the normal derivative on the spheroid E which models the
airplane fuselage. We consider only axial sources so that the problem (2a, 2c) is symrmetric in the
azimuthal direction (see Fig. 1). The condition (2b) expresses the fact that the scattering is hard
(zero normal velocity on the su;'face). The con(ition (2c) (the radiati'n condition) ensures that the
problem (2a, 2c) has a unique solution.

The problem (2a, 2c) is set up for numerical solution by uiriting

* =, + *s,

where os is tne singular part of the solution

0s exp(iklp - qj)4,Tlp - qj

and ' is the scattered field and will be a solution to the problem

A 4' k+4' = 0, (3a)

, . on E, (3b)

an

* '- ik -, 0(r A). (3c)

The problem (3a, 3c) is converted to an integral equation using the single layer potential method
(see Ref. 4). One assumes a solution 0' of the form

'(p) -f E o(q)G(p,(jidAq, (4)

where G is the free space G-een's function

G(p,q) = exp(iklp - q)
4np -ql

and o is to be dptermined. The physical interpretation of -4) is of a distribution of point sources
Awith density o such that the total field is the superposition of the field from each of the poirt

sources.

On taking the normal derivative of (4) and letting the point p approach the surface E one obtains
the surface Fredholm eouation of the second kind for the unknown function a (see Ref. 4)

Sf o(q')Gn (qq")dAq n(q), (5)

where *n is the prescribed Newmann condition [from 3b).

If 0 denotes the polar angle of the ellipsoid E (see Fig. 1) then by the axial symmetry (5) :an
be converted into a one-dimensional equation

a--) - j/?
- 

dO'G(O')H(0,0') = -0n(O), (6)

J-1/2

where the kernel function H(O,O') is the kerrel in (5) integrated in the azimuthal dfrectinn and
multiplied by the area factors.

There are two main difficulties associated with the equation (6). It is known that the equation will
become singular if k is an eigenvalue of the interior Dirlchlet problem. This problem of the interior
resona,,ces has been considered 5y various authors and the reader is referred to Reference 4 for a
comprehensive discussion of techniques For dealing with this problem.

It has been found that these singularities do not extend over a wide frequency range, and for the
purpose of obtaining a power spectrum, this is not an important problem.

A much more critical problem iF that of adequately resolving the solution at high frequencies. A
measure of the oscillatory behavior ot the solution is the nondimensional quantity ka where a is some
lngth scale associated with the body. We will take a as the semimajor axis. The study of aercacoustic
ucdttering requires ka v 100 and at these frequencies many grid points are required. In order to obtain
solutions at these frequencies, appropriate coordinates must be Introduced.

Using an evenly spacee grid Equation 6 is converted to a linear system

S17)
2 .. 0 ''4"'l 1 )



Pressure signals weri, measitred with a 1.3-c1-diaM condenser microphone and the data were passet .hrough a
bandpass filter, with the oscillating frequency set to an accuracy of + 1 Hz. The oc'ror of the electronic
systev.., incluJing readout, was estimated as within 0.5 dB. The microp1~ones were mointed level with the
body on an especially designed arc su.pport to minimize possible ref lection Irom the mounting. The long
digtances betreen the microphones and soitrce made precise positioning very difficult using conventional
positioning methods. Because of this owror, phases cosuld not be accurately determined and are not reported.

Figure 4. Experimental configuration on thw
anechoir tloor.

'1. Discussion of Results

Data was taken over the anechoic floor at a sequence of observ~tion angles as shown In Figure 5.
Figures 6- 10 are graphs of the decibel level chanqe for the total field ds function of the observatiolu
angle 0o for a sequence of ascending frequencies. The gjraphs show the comparison between me~asured and
computed results. The iseasured data were averaged ovpr five readings taken at different times.
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Numerically it is.found that at low frequenries the scattered field is very s1all relative to theincident field except in the vicnity of the shedow region. Since the incident field is omnidirectionalon circles centered at the source, Curves 6 and 7 would be completely flat if there were no scatteredfield. Thus the measured flatness of Curves 6 and 7 near 0o -0 confirms the numerical results. This i'"effect is due to the slenderness of the body. Computations with wider sphe.-iods at constant frequencyshow that scattering in directions near the dxis increases as the body beromes spherical. Such results
will be shown in section lI.e.
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As the frequency varied from 1.4 to 16.5 kHz (ka = 14 to 166) the dip in the shadow region increasedby 5 dB. This is the region of largest experimental difficulty because of the sharpness of the dip, which
increases with frequency und is sensitive to the angular position. Agreement even near this point is with-in experimental error except for the highest frequency where the dip is extremely sharp. The experimentaldata will, gneral, give a smaller dip, because the microphones average a relatively large angular sp)ead.
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We note that as the wavelength decreaser,, the difference between minimum and maximum oresstre increases
and the pressure field itself becomes more uscili:tory as a function of the farfield angle. F(r example,
at 16.4 kHz the difference is of the order of 8 dB, and this is roughly consistent with the measurements;
for still higher frequencies the prezent measurement techolque will have to be improved in order to resolve
the rapidly oscilatirg acoustic nressure. At the lowest frequency of 1.41 kHz, the diffirence is only
2 db, and in the illuminated region the Dres'ure is essentially flat. Thus. the scattercd field in all
regions of space becomes stronger as the frequency increases.

At the highest frequency considered here the p:sition of the sources with respect to the body is
crucial in oetermining the location in the dips and peaks in the sound pressure level. This is because
small changes in the source position, at this frequency, correspond to a ignificant chanpe with respect
to the acoustic wavelength. In the illuminated region where the total field is the super )sition of two
different waves the change in the phase of the two waves causes substantial difference in the total wave.
In the shadow region where the field is basically composed of ,nly one wave. the farfield sound is much
less sensitive to che source position. A numerical study of the effect of varying the source position will
be given in section II.e.

For the experiment body, the frequency of 16.4 kiz corresponds to a ka of 166. For a typical fusel-
age 70 m long, this corresponds to a frequency of approxinately 0.3 ktlz which is nea," the peak of the jet
noise spectra. Thus, the major conclusion is that scattering cannot be ignored for any aeroacoustic
application and must be included i'i any prediction scheme.

The plot !or 16.4 kHz includes comparison of results obtained by experiment, integral equation, aaad
geometrical optics. The errors due tv the geometrical optics approximation near the shadow region can be
clearly seen. As stated previously computations of -he geometrical diffraction appruximation show
discrepancies of the order of 5 dB from the measured results. Thi; was considered unacceptable for
aeroacoustic applications.

The 16.4 kHl solutien could be generated in core because of a proner choice of the stetching
parameter. A grid of 169 points was used on a Cyber 175 machine. The computatiun of the matrix (see (7)
required 105 sec whlle the solution in the farfeld can be tomputed in 0.9 secipoint. From the fiqure for
16.4 kHz and from comparisons discussed in Referente 6 it is apparent that geometrical optics provqdes
accurate solutions except near the .hadow region. Thus the solution by the Integral equation rethod is
required only in a restricted region of space and ,ince the cost of computing the matrix must be spread
over fewer points the effective cost per po'nt becomes greater.

x x
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e. Numerical Stuly of the Scattering Problem

Since the previous results show excell2nt agreement between the measurements and the coasputitions,
the numerical scheme can be used to study the scattering problem for a s-ide range of different parameters
Such a variation would be too costly for an experimental study.

We consider variations in the following parameters

(1) Aspect ratio of the ellipsoid

(2) Distance of the source from the body

(3) Number o' sources.

In practical applicati other considerations generally determine the choice of these parameters, but this
study will clarify the effect of the scattering anc" 3ive guidance to design critLria.

In figure 11 the relative sound pressure level is plotted for two ellinsolds of asdect ratio 4:1 and

10:1. All other parameterS are the same as in Figure 10.

7
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The figure indicates that the iforwa,d scattering is greatly inc.reased as the aspect ratio is decreased
(the body becomes blunter). This result is consistent with the asymptotic theory. The dip in the shadow,
region is drastically increased as the bluntness increases (i.e. the body becomes more opaque to sound).

The figure is plotted with an angular spacing of 100. This is sufficient to provide the gross
features of the scattering. In the shadoti region (0, > 1700) the asymptotic theory predicts that the
totalI field is a superposition of two waves of roughlifequal strength (see references 3 and 5 for more
details). It is w.ell known thot this causes interference patterns which are manifested by rapid variations
of the acoustic pr-essure over small angles. This is confirmed by the numerical computations and in
Figujre 11, these oscillations are plotted on a finter grid between 1700 and 1800, for the 10-1 ellipsoid.
Experimentally these variations arm difficult to resolve by microphones and the measured pressure-corresponds
to a spatial average of the point wise pressure. This has, been verified in the experiment discussed
previously.
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In Figure 12 computations for three different source positions are shown. The sources were placed at
3.12, 4.4, and .7l cm from the tip of the body. The aspect ratiu was 7.0833 and the non-dimensional
wavelength (kA) was 166. Note that the effect of the scattering becomes much stronger as the source
approaches the body. This is true in both the forward illuminated region and also in the shadow region.
This result is to be expected based on thr. asymptotic theory.
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In Figure 13 tte sound pressure level for five axial sources placed 0.625 cm apart ard with the first
ne at 1.9 cm, is shown. The other parameters aro the same as in Figure 12. The result of this computation
is typical of tne smoothing effect caused by replacinig point sources by line sources. The effect of the
scattering is now predominantl~y in the shadow region and is still quite substantial. The flatness of the
curve in the illuminated rggion can be changed by rearranging the position of the sources with respect to
the wavelength. Therefore, one can not always expect the scattering by line sogrces to be so negligible
pin the illuminated region.

These ccs putations are not meant to be exhaustive but to indicate the trend caused by varying the
different parameters. Such variation of parameters is not generally feasible experimentally, but can be
obtained efficiently by numerical simulation with a code whose reliability has been checked experimentally.

. espct ttheody aspct/
rati - 70833 ka 16/

-4/
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Ili. VELOCITY AND STATIC PRLSSRE PROFILE FOR SIMULATED 4'RD MCTIO '

The forward motion effect was simulated in the RASA L3'ngley 2.4~4 m diameter jet facility in an anechcicchamber. The same ellipsoid as used in the prevlou , vx.eriant was moointed in the 2.44 m jet with a 2.5 cmdiameter exiting along toe major axis. The configuration is shown in Figure 14.

The 2.4s m jet has a mean velocity of 36.57 a/sec. The 2.5 cr jet h4d in e,"t Mach number of 0.50.The mean velocity profile and static pressure was measured a. *rrous X ana Y statior. e as indicated in
the Figure 14. Measurements were made at 11 stations with X/d varyilig between 1 and 17 where .1 is the
exit jet diameter.

weeThe mean velocity profile follow~s a similarity law which we now describe. 0!'ine Y1/,2  as the point

Yn U - 11e =1/2(u0 - Ue

c -4

where U is the local mean velocity, be is the free stream velocity of the 2.44 m jet eod U. is the
centerline velocity. If we set

Y/Y if2

then the following simila;'ity law holds

-6

i(y) _ . U

-c Ue

Figure 14. Test configuration fur the mean fnrEthe igur 14 measurements.

YI/2 U - e = /2(Uc - Ue

4a e
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Figure 15 shows the mean velocity plotted in teirms of the simillarity variable y. Because of the
noture of the potential flow and core of the jet, this similarity 1all is not satisfied within the
potential core. However, beyond Xfd ,5 there is excellent agreement.e

The static pressure variation has a simrilarity law given by

whreP/ s h cntrln pressure (Fig. 16). fhis also clearly valid outside the potential core

It has been show~n in the literature that a different similarity law can be obtained inside the
potential core. Functional forms for the functions f(y) and g(y) can easily be obtained by curve
fitting this data. It is planned to utilize this velocity and static pressure profile to determine the
effect of siir'lated forward motion in a realistic environment. since the real acoustic sources will
come from the Jet itself. Eventually, these results will be tested with a real flyover experiment by an
airpldne.
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It gure 15. Similarity law of the mean velocity profile.
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Figure 1. Similarity law of the stai peocity profile.
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IV. CONCLUSION r
The effect of scattering by a body at rest with point sources on the axis has been handled both

numerically and experimentally. The next step is to include the effect of the mean flow on the acoustic
field. Computations for a point source in a jet without a body, have been conducted (see Ref. 9). This
inludes more realistic effects such as sources in motion and non-harmonic sources. The program can be
modified to compute the sound field in the mean flow described in Figures 14 and 15 which corresponds
to the jet in the wake of a body. The addition of the body, so that the scattering can be computed is
feasible at the present time.

These numerical computations can only be obtained for axially symmetric sources flows and bodies.The computation of three-dimensional effects, such as off-axis sources are not within the power of present

day computers for frequencies of interest. Thus such effects can only be studied experimentally at thepresent time.

Future experimental work in this field will consist first of measuring the scattered field of a
body placed in an open wind tunnel with the point sources behind it. This will simulate the effect of
forward motion on the scattering. Following this, experiments will be made with a real jet behind the
body. This will be a realistic flight effect simulation, because it contains the body, the wake, its
mean flow and the jet as the noise sources. It is hoped that in the not too distant future these
measurements can be confirmed numerically. Then there will be a realistic method of predicting flight
effects for this geometry.
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SUMMARY

A brief view is given of the historical development of finite-amplitude wave propa-
gation in fluids. The theoretical basis for the propagation of plane, cylindrical or sphe-
rical finite-amplitude waves through lossless, thermoviscous or relaxing fluids is pre-
sented and characteristic features of the distortion course observed by finite-amplitude
waves in various regions of propagation are emphasized. Some experimental procedures and
results are mentioned.

INTRODUCTION

The non-linearity of Nature is a fact that has frequently been recognized by physi-
cists, geologists, and engineers when considering motion in fluids and in solids. Never-
theless, a linearization of the governing equations has in a number of cases led to ma-
thematically more simple expressions with solutions showing surprisingly good ag~eement
with experimental results. Rather early it was recognized that the validity of the solu-
tions was limited, especially for cases of strong nonlinearity of the material, represent-
ed for instance by its equation of state, and for cases of high amplitude of the distur-
bances propagating in the material.

The propagation of acoustic waves of finite, but moderate, amplitude in media of va-

rious degrees of nonlinearity will be discussed in this chapter, thus excluding the con-
sideration of strong shocks. The finite-amplitude wave propagation is comprised by the

special field of acoustics termed "Nonlinear Acoustic", which includes waves with ampli-
tudes ranging from infinitesimal - covered by the linear theory - to a magnitude leading
to the formation of weak shocks.

Finite-amplitude wave phenomena influence a great number of acoustic topics of both
theoretical and practical character. Steady and unsteady finite-amplitude waves in super-
sonic aerodynamics, weak-shock theory, finite-amplitude wave propagation in gases, liquids
and solids, finite-amplitude bubble pulsations and cavitation in liquids, etc. Moreover,
finite-amplitude wave propagation influences are found by high-power ultrasonic cleaning,
filtering and welding processes, by high-intensity sound agglomeration of aerosols, trap-
ping of fog and drying of podder. Furthermore, finite-amplitude waves are used for mIx-
ing of difficulty miscible materials, production of emulsions, dispersion of solids in
liquids, coagulation processes, degassing of liquids and melts, etc.

Noise generation and propagation by high-powered jet engines and noise propagation
in motor silencers are influenced by finite-amplitude wave phenomena leading to a change
in the spectral composition of the noise.

A field of practical application and of great theoretical interest too which has de-
veloped very fast during recent years is underwater utilization of finite-amplitude waves
in for instance the pirametric acoustic array, which will be discussed in the next chap-
ter.

Only wave propagation in unlimited fluids will be considered in this chapter. There-
fore, discussion of influence of free surfaces, solid walls, etc. on wave propagation in
fluids will be omitted in what follows. This restriction further implies that reflection
of finite-amplitude waves, standing waves and resonances, acoustical boundary layers, and
finite-amplitude waves in tubes and horns in general will not be discussed, though fun-
damental solutions and conclusions derived from studies of these topics will be discussed
to the extent that they may serve the purpose of explaining basic concepts of nonlinear
acoustics. The same limitations will apply to nonlinear impedance materials and nonline-
ar acoustic resonators.

The convective acceleration terms in the equations of motion and the nonlinear pres-
sure-density relationship found by fluids and solids describe and contribute to the fi-
nite-amplitude wave distortion course where their cumulative, rather than merely their
local, effect, eventually may produce steep wavefronts. These nonlinear processes are
counteracted by linear processes like attenuation, dispersiol, molecular relaxation and
diffraction. It is this conflict between cumulative nonlinear wave distortion and the
competing linear processes leading to a pronounced change in waveform which forms the
key to the contents of this chapter.

Like the development within about all scientific fields, the development within fi-
nite-amplitude wave propagation is based on works done by earlier generations. Although
the greatest development in this field has taken place within the last quarter of a cen-
tury - as evidenced by the still-increasing number of papers published on problems relat-• I /
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ing to the propagation of finite-amplitude waves through nonlinear media - the basic re-
search and early developments in nonlinear acoustics can ne traced back some hundred

I years.

i. HISTORICAL DEVELOPMENT

A brief survey of the history of finite-amplitude wave propagation might appropri-
ately begin with Euler's formulation of the conservation equations for a fluid: the equa-
tion of continuity (1) and the equations of motion (2), respectively.

ap a
- + 

)0at ax.i
Du. a i  au.) ap

S -
+ 

U - + p, (2)
Dt at ax z ax i

where p and p are the fluid density and the static pressure, respectively. u. is the par-
ticle velocity vector (with components ul, Z2 and u3); t and x. are tht ttme 2nd the car-
tesian spatial coordinate (with components xi, X2 and x3), respectively. F. denotes a
body force per unit volume vector. Equations 2(i=l,2,3; j=1,2,3) are known as the Euler
equations for frictionless flow. The character of a system of nonlinear partial diffo-
rential equations appears from the second (convective) term, in the parentheses ill Eq.
(2).

Euler's interest in lossless flow led to his study of the propagation of both in-
finitesimal-amplitude and finite-amplitude waves in fluids []. In 1'/65 he published a
nearly correct version of the nonlinear wave equation for finite-amplitude wave propoga-
tion in an ideal fluid:

)Z 1I+ - -= 0 ,(3)
aa ( +, at, 0

where h is the "isothermal" (Newtonian) sound velocity and a is the identification coor-
dinate in a Lagrangian coordinate system. & denotes the particle displacement. Euler did
not solve Eq. (3), but he briefly concluded that, because of the nonlinear term, thG wave
propagation velocity would be higher than the isothermal bound velocity.

Lagrange in 1761 121 also considered the propagation of finite-amplitude waves, and
although he based his calculations on a wave equation having the parentheses in Eq. (3)
in the first power, he was able to draw reasonable conclusions as to the general torm of
the solution to the equation. His conclusion that the propagation velocity of the finite-
amplitude wave should depend on the original wave amplitude shook his confideice in his
own calculations, and led to his conclusion that the only possible means of wave propa-
gation was the linear one governing the propagation of infinitesimal-amplitude waves.

In 1808 Poisson [31 worked on a one-dimensional, nonlinear wave equation in Eulerian
(or spatial) coordinates of the form

a2n a2n an 32n /an\2 a2 n
h 2  2---- +(-- -, (4)

axn at, axdaeatsax/at

where n denotes a velocity potential, and he found an exact solution to this equation
given by

ax = h(- + ~; )(5)
for finite-amplitude wave propagation in the direction of increasing x.

In order to be able to obtain the total solution to the differential Fq. (4) Poisson
coupled the solution (5) to an duxiliary relation:

an an a
- " + =0(6)+

at ax TO."
which is a reduced version of the wave equation for finite-amplitude waves propagating

in the positive x-direction in a lossless fluid.-1
During the years around 1848, while revolution spread across Europe, thr was an

increase in nonlinear acoustics research. It is hard to say whether there was ,tny connec-
tion between these incidents, but they were certainly both characterized by a breakthrough
of new ideas. After a discussion between Airy and Challis about the existece of plane
sound waves, Stokes (4] published the first sketches showing how waveform distorticn
might occur due to the different phase velocity of different parts of a finite-amplitude
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wave. Stokes eve.n tLeaced the. waveform in the limit of diatort .on - the shock wave - but

because he considered a lossle3s fluid he omitted the thezn'odynamic consequence of shock

formation. Little was kncwi about thermodynamics in 1048, and it was to be another 20 to I.-2
30 years befora the signifivance of energy loss for shock propagation was recognized and

generally accepted.

The year 1860 coule be considereid as the end of the era of wave propagatior in loss-

less fluids. The last ese2ntal contributions to the theory of leoslesL wave propagation,
completing the period of development started by Euler, were made by Earnshaw 151 and Rie-

mann [6]. Earnshaw established a coinection bet'ween the thermodynamics represented by the

thera odynamica expression X in Eq. (7) and the original mathematical basis for one-di-

mensional, f.tnife-amplitude wave propagation represented by the equation of continuity

(8), the equation of motion (9) and an equaticn .)f state (10):

A f'() dp ; (7)

0 
(

ap ap au
- - + - = 0 ; (8)

au aU I ap
- + u -_ + - = ; (9)

at ax D X

p = p(O) . (10)

A is the local thermodynamic strte of tnc fluid, and c is the local "isentropic" veloci-

ty of sound. Insertion of Eq. (7) into Eqs. (8) and (9) yields

-+ U-+c- 0 , (1)
at &x ax

3u auA )A
- + U - + C - = 0 ; (12)
at 'X ax

which led to Earnshaw's conclusion lot simple waves that the "phase" velocity of a point

of a wave having partxcle velocity u is given by (a ± c), + for waves prop.1gating in the

positive x-direction and - for waves propagating in the negative x-dirLction. Earnshaw

further showed that the local velocity of sound in a gas might b.! wrxtten as

where c is the velocity of sound for infinitesimal-amplitude waves, while the correction

terms o{(y-l)/2}; arises from the nonlinearity of the pressure-denslty relation of the

gas. y is the ratio of specific heats of the gas.

For wave propagation in the positive -direction the pnase velocity of a point of

the wave havling particle velocity u might therefore be written

= U+C = Co 4 (f (14)

u=constant

whic.h involves the two fundamental contributions to i1n~te-amplitude wave distorticn, the

thermodynamic contribution {(y-l)/2)u and the conective contribution arising from the

fact that the local volocity of sound c is being jonvected along with the iCcal particle

velocity u (7].

Earnshaw's theory for si-ple waves was generalized by Roemann 161 to comprise a non-

simule wav. region, i.e. a region for wave propagption in two directions. Riemann's re-

sulis form the basis for the method of characteristics used, for instance, by solvlng the

hyperbolic partial diZforential equations describing supersonic flow.

Rather incorrectly Riemann assumed that the traisitior across a shock is adiabatic

and reersibje, am, arror which was corrected some years ;ater by Rankine (1870) after a

development of the thermodynamics had taken place 18). A contribution to a better under-

standing of the nature of a shock was publizhed by Hlugoriot (188n) who showed that an

adiabatic, reversible transition in a shocK would violate the piinciple of conservation

of energy, and further that, in the absence of viscosity an heat conduction in the fluid

outside the shock, the concervation of energy implied conservation of entropy across the

shock 19]. The conservation equations connecting the thermodynamic and kinematic quanti-

ties (n the two 5ides of a shock, the so-called Rankine-flugoniot eqxations, thus found

their final form.



A deeper appreciation of the processes occurring in a shock was obtained th':ough the
work of Lord Rayleigh [10] and G.I. Taylor (i] published in 1910. Viscosity and heat

I, -- conductivity had now been included in the equations governing finite-amplitude wave.pro-
pagation. The problem was now to solve the nonlinear wave equations subjected to speci-.
fic initial or boundary conditions considering the influence of _he loss sources.

During the nineteen thirties development in nonlinear acoustics research was brought
a great step forward by Fay's (1931) publication of a solution for a p~rtcdic finite-am-
plitude wave in a viscous fluid and by Fubini's (1935) explicit solution to the wave equa-
tion for finite-amplitude wave propagation in a lossless fluid.

Fay (12] published a solution to the wave equation valid for the propagation of ple.,,
finite-amplitude waves in a viscous fluid in the region showing a comparatively stable
wave form:

P-Po 2ac 0 sin n(wt-kx)
P - - / ,C (15)

00 n=l sinh na (X+xO)

where

2 w2n
a=--

3 poC
3

0

and

y+l

2

n and w are the shear viscosity and the angular frequency, respectiv!li,. n is the hano-
nics number. x is a constant related to the discontinuity distance, which is th6 dis-
tance from theowave source for the formation of a discontinuity in a plane sine wave of
angular frequency w propagating in a dissipationless medium.

While Fay's solution does not satisfy the boundary conditionz of a sinusoidal source,
the explicit solution to the wave equation obtained by Fubini (13] some years later does.
Fubini's solution shows how an original sinusoidal wave of finite-amplitude will distort
by formation of higher harmonics during propagation:

u = 2uO  sin(n(w - kx)) , (16)
n=1  no

where

a = (- -I) kX.

0

The discontinuity is attained for a value of the dimensionless distance parameter a = 1.
While Fubini's solution describes the finite-amplitude wave distortion close to the source
and before shock formation, Fay's solution describes the waveform towards which the fi-
nite-amplitude wave tends if the original amplitude is high enough for shock formation.

The development of theoretical solutions for finite-amplitue.a wave propagation nas
since the Second World War mainly followe_ two tracks: (1) solutions based upon Burgel's
equation, and (2) solutions based upon the theory of weak shocks, which perir..t the solu-
tion of finite-amplitude wave propagation problems, when the waveform contains shocks of
not too high amplitude. Both main approaches will be discussed in detail in the ollow-
ing.

2. FINITE-AMPLITUDE WAVE PROPAGATION OF TODAY

Owing to the fact that the wave propagation in a fluid is completely determined once
the particle velocity vector u, and the three thermodynamic properties are specified as
a function of space and time, six independent equations are needed. These are usually:
(a) the equation of continuity expressing the conservation of mass, (b) the three compo-
nents of the equation of motion expressing the conservation of monentum, (c) an energy
equation expressing the conservation of energy, and (d) an equation of state, a consti-
tutive relation characterizing the fluid and its response to thermal or mechanical stress.
For a number of fluids, constitutive equations expressing the dependence of other physi-
cal fluid properties, for instance viscosity, on temperature and pressure, and through
it on space and time, may be needed. Very often these constitutive equations are of an
empirical character.

The derivation of the basic equations of finite-amplitude wave propagation may for .
instance be found in [7] and they arc:

'a-
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II

Let the displacement of a piston at a = 0 be given by:

f () (24)

The Taylor series expansion about the equilibrium density P of the square of the
local sound velocity c in Eq. (23), retaining terms through secoRd-order only, leads by
Eq. (25) to the following approximate form of the exact wave

___ - -( -- (25)

= 0 aa2  co( dpo 3a 3a2

By substitution, a general solution to Eq. (25) can be found:

a r Idc\[
(a,t) = f _ +2 1 + o ( t - -)J (26)

where the term f(t-a/c ) is a solution to the infinitesimal amplitude wave equation for
one-dimensional wave p~opagation. The second term in Eq. (26) is proportional to a and
to the square of the ratio of the piston velocity to the velocity of sound. This ratio,
being dimensionless, forms an acoustic Mach-number whict frequently in practice may be
exceedingly small. Nevertheless, the second term may become of increasing importance dur-
ing the wave piopagation owing to the factor a in this term. It is therefore to be ex-
pected that, for continuous propagation of the wave under the lossless conditions con-
cerned, the neglect of terms of third and higher order will no longer be justified.

If the fluid considered is a perfect gas the solution (Eq. (26)) may be written:

(a't) = f t - + 4  '(t - (27)
o 0 c c 0 J

For a simple harmonic piston motion given by:

f(t) = A cos wt (28)

Eq. (27) yields:

9(a,t) = A cos w 1.- + 8 wA2a - cos2w - (29)

Eq. (29) shows that the displacement of any particle in the wave motion is no longer
simple-harmonic, but is made up of a term independent of t and of two simple harmonic
terms, one with the piston frequency and one with twice this frequency. The occurrence of
the factor a in the term of twice the piston frequency implie3 that the energy being sup-
plied at the piston frequency will gradually be transferred to the second and higher har-
monic components, leading to a progreFsively steeper front of a condensation wave during
its propagation. This transfer of energy, from the fundamental frequency to its higher
harmonics, is one of the basic features of nonlinear acoustics and it will under lossless
conditions result in the formation of a shock wave at a distance from the piston given
by:

2c' 2
0-- = (30)

(Y+l)u o  (y+l)kM

where u is the peak value of the particle velocity and where M = u Ic is the acoustic
Mach number; k(= w/o ) is the propagation constant in the wave propagation with funda-
mental frequency w. 0

The distance I is often called discontinuity distance, and is, as given by Eq. (30),
connected to a loss] ss wave propagation.

It should be noted that, even for M << I, the cumulative nonlinear effect of the se-
cond teim of Eq. (26) may lead to serious wave distortions. If dissipative mechanisms are
taken into account, the increasing absorption for increasing frequencies - for a number
of liquids and gases the absorption is proportional to the square of the frequency for
broad frequency ranges - implies that the wavefront will attain a maximum steepness, when
the distance of propagation is such that the rate of energy transfer to higher harmonics,
due to the nonlinearities, is just equalized by the increase of absorption at the higher
harmonics.

The stabilization of the wave profile thus taking place is only relative. It does not
mean that by further propagation no change of the wave profile will take place. The damp-
ing of the wave amplitude will reduce the strength of the nonlinear effects, and an ori- --
ginal sLnusoidal wave profile for instance will experience a gradual smoothing out of the
steep wavefront and the wave will at longer distances again return to its original sinus-
oidal shape.

The transfer of energy to higher harmonics appears as an attenuation of the funda-

, -. -".. qlj54 : ,-.. ""

..- : ' ". s: rg= "- -



mental frequency wave in excess of the attenuation due to absorption at the fundamental
frequency.

Let us consider the propagation of a plane, finite-anpZitude wave in a dissipatzve 1/,-
fluid. It is as..umed that heat conduction (constant heat conductivity) and viscous dis- 'w I
sipation (constant viscosities) are the only sources contributing to the entropy produc-
tion. Fuither, it is assumed that the acoustic Mach number H << 1, which is the most in-
teresting case due to the interaction between nonlinearities and dissipation. Then the
equation of motion (18) without body forces may be written:

u 4 . = "a -Sn (31)

and the energy equation may through the 21nd law of thermodynamics be written:

PTQ + u L$ + _2 (2
By inserting Eq. (20a) in Eq. (32), lineerizing the diffusion terms due to viscosi-

ty and heat conductivity, and by insertion of the result in the equation of mce-on (31),
this equation may be written in the following approximate form:

P - 22 + b 
a u  

(33)
Dt, am ax,

with
+ 4 + K (34)

where C and K denote the bulk viscosity and heat conductivity coefficients, respectively.

Here p, by means of Eq. (20a), is given as:

P= +A--o)+ B \ 2 (35)

with A and B being expressed by Eq. (20b).

If we introduce the thermodynamic function:

0

togethei with a velocity potential we may write the equation of continuit (17) as:

-- + UL + a . (36)
at ax 3X ax

Analogously, Eqs. (33 and (35) may be transformed by A and 0, and their results,
when inserted in Eq. (36), lead to:

2L-L12___LL !!\+ L 22 (37)

which is an approximation correct to the squared term in M inclusive.

Tzansforming the variable t to the variable t' = t-x/c and by returning to the ve-
locity it- ao/ar , Eq. (37) reduces to:

.au - /D + !L7 LU- b 32U (38)
ax G c' at' 2P 00) Zt,

0 00
Eq. (38) is of the same type as the Burgers' equation, and by omission of the nonlinear
term (38) reduccs to an oquet'on of the diffusion type. Eq. (38) describes with sufficient
accuracy, in spite of its arproximate character, both the nonlinear and the dissipative
processes during the propagation of finite-amplitude plane waves in a viscous, heat con-
ducting fluid. Owing to th(. reduction of the retarded time t' to t for x=O, Eq. (38) is
well adapted for use .ith boundary-value problems, and it may be termed the boundary-va-
lue Zorm uf the Burgers eqiation.

Using a cha.eacteristic distance x in the sound field together with the peak value
of tie particle velocity uo (source value), tha following dimensionless ratios can be
established: I,

0 E n (39)
V 0 ; ' : l)M - and 1) X--

w'.ich inserted in Eq. (38), yields the dimensionless form of the Burgers equation suit-
able for boundary-value proble.ns.

--wit . ' .L (40), -
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r - ( + 2) 2)(Re,) (41)

where Re0 = constitutes an acoustic Reynolds ntzdber analogous to the hydrodynamic
one. a o

The coefficient r is an essential parameter in nonlinear acoustics. It describeu the
ratio of the influence of nonlinearity (including "equation of state" and "convective"
nonlinearity contributions), represented by the nonlinear strength term (1+B/2A)M, to the
influence of dissipation.

r was first introduced by Gol'berg [161 as a criterion such that shock formaion is
not likely to take place if 1 1. For an originally sinusoidal wave, it will be appro-
priate to choose the characterisL.V distance xe of the wave propagation as:

X0 1 7

where A is the wavelength. Ths leads to the expression:
,1 + 0 + 2 P O- 142)

where p0 is peak pressure of the finite-amplicude sinusoidal wave (measured at the source).

Further, by the choice of x - 3/k, the value o=l oC the spatial coordinate a will
.-"spond to a propagation distgnce equal to the disco'tinuity length I given by Eq. (30)

for the lossless propagation.

Eq. (40) has formed the basis for a number of theoretical analyses of finite-ampli-
tude wave propagations in dissipative fluids. A complete steady-state solution to Eq. (40)
can for instance be found in (17] and (18] for ol~ne waves giving:

V= ( \ a . (43)
w e c(-1) n FI ) exp(-n',/ r )cos ny with cn the Neumann factor (co=l, c,=2 for n>l),where Zc('P£ 2=C

and, In the Bessel function of imaginary argument: In" ( = (i).

The reduction of the hydrodynamical equations and the equat~on f state to one single
equation for the approximate description of the propagation of cylindrical and spherical
waves of finite amplitudes, analogous to tie plane wave case eyp'essed in Eq. (38) may be
written:

S, -- + a-- _ b u (44)
a r (2A 2 ,t 2poc3 w,2

0 0
where n=l, and 9 for sperical, cylindrical aad plane wave, respectively. For n= and ,
Eq. (44) is valid only in the domain kr - 1, and t' = t 7 r-ro)co for divergent and con-
vergent waves, respectively.

Using dimensionless quantities, Eq. (44) can . reduced to the dimensionless bounda-
ry v.lue form of Burgers' equation given by:

1W 3W 1
-- W r- 
2 w  

(44a)
af DYap

where

W = (o/ao)0 V = (r/ro)n V - (r/r ) (u/uo)
= 2,'W ( r.- ) = 20 [ /ro )l ]

r0 0 1 0for cylindrical waves (n= )
r' = F0o(l+f/2ao)-*

f = 0 ln(/o^) a 0 ln(r/re)
-f/a 0 0for 3pherical waves (n=l)

r - ro

0 0 O 0

ro =( + 2) Ou

The similarities between the form of Eq. (44a) and the form of Eq. (40) for planewaves should be noted The two equ,_%ions differ in respect of the spatial coordinate de-
pendence of r in Eq. (44a). This Ls a very interesting feature and owing to it the propa-
gation of a finite-amplitude cvlin~drically or sphericallv divergent wave in a thermovis-

coub fluid is mathematically euuivalent to the propagation of a plane finite-amplitude
wavy in a fluid which has a thermoviscous loss coefficient that grows respectiely linear-"," [ y or exponentially wi,-h range.
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Thus, for a diverging wave Eq. (44a) shows that viscous effects will dominate and reduce
nonlinear effects sooner than for plane waves, or alternatively, the spreading loss in-
cured in diverging waves reduces their amplitudes and thus the nonlinear effects. Con- j.(
versely, an amplification of the nonlinear effects may for instance be found for finite- I 1
amplitude waves propagating upward in the atmosphere owing to exponential variation in
atmospheric thermodynamic properties.

Calculations based on the above equations and supported by experimental findings
show that the propagation path of an original sinusoidal finite-amplitude wave in a dis-
sipative fluid roughly may be divided into three regions. In the first region - in what
follows termed region I - the dissipative effects are small compared to the prevailing
nonlinear effects. Thus the nonlinear effects by accumulation during the wave propagation
distort the sinusoidal wave and lead to an increasing steepness of the wave fronts, even-
tually resulting in the formation of a "sawtooth" wave. But before the wave shape becomes
a sawtooth the first discontinuity of the wave front (or maximum steepness) has formed at
its zero-crossings at a source distance termed the discontinuity length. This distance
must, owing to the dissipative effects in region I, be greater for wave propagation in a
thermoviscous fluid than for wave propagation in a lossless fluid, Eq. (30), if the same
initial wave amplitude is considered. The discontinuity length may appropriately form the
boundary between region I and the subsequent region II, where the effects of nonlinear
and dissipative processes cancel one another, leading to a stabilization of the wave shape.
In region II a relatively stable sawtooth shape of the original sinusoidal wave may be
obtained.

Owing to the relatively strong dissipation of energy in a sawtooth wave profile, the
finite-amplitude wave gradually loses its wavefront steepness and the shock thickness of
the weak periodic shock wave (the sawtooth wave) increases. Finally, the wave profile re-
turns to its original sinusoidal shape at a distance from the source forming the beginning
of region III, the so-called "old-age-region" in which the amplitude of the wave will be-
come of second order of emallness and in which further amplitude reduction is governed by
small-amplitude (linear) absorption rules.

The question of whether the shape of an original sinusoidal wave w.li cIange accord-
ing to the three-region scheme outlines above depends on the initial nressure amplitude
of the wave, its frequency, and the strength of the dissipative properties of the fluid;
all these properties are incorporated in the Gol'dberg number r which according to Gol'd-
berg L16] may lead to shock formation only for r > 1.

Thus, for the propagation in a thermoviscous fluid of a sinusoidal wave of not too
high an initial amplitude the dissipative effects may lead to a direct transition from
region I to region III without the occurrence of region II.

Only higher initial amplitudes lead to the relatively stable wave shapes of region
Ii.

At a sufficiently high initial pressure, the later amplitude of the distorted origin-
ally sinusoidal wave becomes relatively independent of the initial amplitude, an effect
termed ncousticaZ saturation.

Description of finite-amplitude wave dis-
tortion in a thermoviscous fluid has been done
by the use of Burgers' Eq. (40) and its plane
wave solution (43). Eq. (43) can be simpli-

4~ Y U! fed and-reduced to:

}9 si 2 y (45)
O - l P sinh nfl+o)/r

n=o

I U, which is a form of Fay's frequency domain so-
lution [121 for a nearly stable periodic wdve-

2] form in a viscous perfect gas (region II so-

lutlon). A region I solution to Eq. (40) for
' 1" > 1 has been given by Khokhlov et al. 119]

for an initial sinusoidal waveform:

fu u = u. sin wt(at x = 0). (46)

Y Their solution for the distortion of the tra-
velling plane wave has the form:

y = arcsin(u/u0) - o(u/uo ) (47)

Figure 1. The different "milestones" in where
the change of the shape of an originally
sinusoidal finite-amplitude wave, includ- -(+\U

ing all th'ee characteristic regions, are 2 x and = 0(-x/ao)-
shown in Fig. 1. 0

Eq. (47) may be used for a graphical
construction of the waveform in region I since it consists of the sum of two functions,
aFcsin(u/u ) and a straight line making an angle arctan a with the u/u0 axis (seerig. 2). uI

*!
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An exact solution to Eq. (40) describing the structure of
one period of a sawtooth wave, i.e, a periodic s)ock wave in re-

I. gion II, can be written:
/Y..dCU.)I~U 1

u - y + n tanh (- I < y< r)

0
Y-I where the dimensionless quantity A is , measure for the shock

/ thickness given by:

_I 7 1T (49)

Figure 2. Graphical Thus the shock thicknaa will descreace for increasing F, leading
construction of the to A + 0 for r - -. in this limit the solution becomes discon-
waveform distortion Li1nuous at y=O and describes a real sawtooth expressed by:
according to Eq. (47). = (50

S= - (- V ).(0

The plus sign corresponds to 0 < y < n and the minus sign to -iT < < 0 . If the particle
velocity amplitude is designated u for y=O, Eq. 50) gives:

up = - 1(51)
:U 0 1+0

which determines the reduction of the peak amplitude of an originally sinusoidal wave,
when the wave during its propagation has attained a sawtooth shape.

The onset of region II for lossless propagation of plane waves was given previously
by c=l. Owing to the dissipation influences in a thermoviscous fluid, changing the steep-
ness of the wavefronts, it is more appropriate to choose a somewhat higher value of o for
the start of region II. Blackstock [71 selected a = n/2 to determine the onset of region
II. This a-value corresponds to the distance from a sinusoidal source where the peak am-
plitude of the wave just reaches the steep wavefront (see Fig. 1), and after which a saw-
tooth wave is formed.

We have seen that the dissipation of energy and the increase of entropy taking place
during the irreversible compression processes in the wavefront reduces the amplitude of
the sawtooth wave according to Eq. (51). Thus r will decrease for increasing 0, giving
rise to an increase in the dimensionless quantity A for the shock thickness. This increase
in A creates the basis for a determination of the end of region II for waves in a thermo-
viscous fluid, leading to an upper limit in dimensionless distance a (the end of region
II) on a < 0.6f-I = o3, which for large r-values may reduce to a < 0.6r, or

'2p 03~
x 0.6 < 0.6/a (52)

where a is the dimensional low-frequency, small-amplitude attenuation coefficient.

In order to bridge between the solutions discussed above for regions I and II, estab-
lishing a.a inner relation between the solutions, Blackstock [20] suggested a connection
between the Fubini and the Fay solutions for plane sound waves of finite amplitudes. By
use of the theory for weak non-uniform shock waves he developed a general solution that
contains the Fubini and the sawtooth solutions as limiting cases, and which also covers
the transition region between the two solutions. The solution was given as a Fourier se-
ries representation of the waves in the two regions:

Bn - (2/ni)V ,2/nso) f cos n(¢-a sin €l)d€ (53)

%iin
where B is the Fourier coefficient for the nth harmonic, V = u /u is the shock ampli-
tude ven by Eq. (51), and is a function of y =wt-k. p

166 In the range 0 < 0 < i,
V = 0, Eq. (53) reduces to
t6e Fourier coefficient
B = (2/no)J (no) of the Fu-
byni solutioR (Eq. (16)),
while for 0 >> 1, V is given

O :~ by Eq. (51), and Eq.
P
(53) re-

duces to a sawtooth solution
given by:

2 = (54)
54n n(l+0)

_______"_____.____-___ which is the Fourier coeffi-
S 5 10 cient of the Fay solution

ligure 3. Dimensionless amplitude (Fourier coefficient) (Eq. (15)) in the lossless
variation as a function of the dimensionless distance pa- limit (r * =) of this equa-
rameter a for the fundamental B1 and for the second and tion.
third harmonics B and B3 , respectively, in an original-
ly sinusoidal wave: +) Fourier coefficient contribution
to B: arising from the Fubini solution (Eq. (16)); 0)
Fourier coefficient contribution to B, arising from the
sawtooth solution (Eq. (54)).
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Analogous to the propagation of plane waves of finite-amplitude in a thermoviscous fluid
described by the use of Burgers' equation, the cylindrical and the spherical wave cases
show characteristic regions I-III of propagation [7].

3. THE WEAK-SHOCK THEORY

In Burgers' equation discussed above the nonlinear and the dissipative effects were
attached to individual terms in the equation which then formed the basis for analytical
or approximate solutions in region I or in region II. An analytical method, which more
quickly and more easily leads to results in region II, is the weak-shook theory. The ba-
sic features of the weak-shock theory are that the diffusion effects (viscosity and heat
conduction effects) are disregarded except within the shock themselves, where they account
for the entropy increase, and that the continuous parts of the wave in the regions be-
tween the shocks are governed by the Earnshaw solution for simple waves, thus assuming
isentropic flow in these regions.

The Rankine-Hugoniot relations will be the bridging functions which connect the con-
tinuous parts of the wave by relating the values of the kinematic and the thermodynamic
quantities at both sides of a surface of discontinuity. These relations may for one-di-
mensional wave propagation (normal shocks) be written:

U1 - U2 
= 

I(p2 - pi)(l/P1 - 1/p2)) (55)

h2 - hl = k(p2 - p,)(I/p: + I/P2) (56)

where u denotes the particle velocity and h denotes the enthalpy per unit mass. The sub-
scripts I and 2 refer to the conditions just ahead of the shock and just behind the shock,
respectively.

It should be noted that dissipation is accounted for indirectly by Eq. (56). If this
equation is tranformed by expanding it in powers of small differences (2-31) and (P2-P),
retaining terms to third order in (p2-PI) and to first order in ( 2-si), we obtain, after
insertion of (Dh/as)P = T and (3h/ p) = 1/p = v, the following expression for the entro-
py increase across the shock: s

1 ( Dv) (P2_P0_) (57)

Thus, the discontinuity of entropy in a weak-shock wave is of the third order of small-
ness relative to the discontinuity of pressure.

This very essential expression (57) justifies the adoption of isentropy for infinite-
simal wave propagation, and shows that even fini e, but small, amplitude waves lead to
approximately isentropic conditions.

Friedrichs 121] concluded from Eq. (57) that if changes up to only the second order
of smallness in the shock strength 6 = (P2-P:)/p: are considered, no change of entropy
will be observed. This may lead to a theory for the isentropic loss]ess Zluid.

As already shown by Earnshaw [5] the propagation of a finite-amplitude wave in a

periect gas may subject to the boundary conditions:

u(o.r) = u(t) (58)

be written in terms of a parameter € as:

U(X,t) = G() (59)

where

6 = t X

The parameter 0 may be interpreted as the time the "wavelet" of particle velocity u left
the origin x = 0.

If the continuous waveform solution represented by Eq. (59) leads to a shock formed
at a distance x from the origin and at the time t, then this shock will arrive at any sub-
sequent point at a time t given by:

= t +f - (60)

U is the velocity of propagation of the shock, which accordincl to the Rankine-Hugonlot
relations depends on the particle velocity values u, and u.- on either side of the shock,
and thus may be written:

U= ° +k 1 2),14 +u4 ) (61)

Eq. (61) shows that weak shock propagate with a velocity which is the mean value of
the phase velocities just ahead of and just behind the shock.

By use of the retarded time t' = t-x/c and by insertion of Eq. (61 into Eq. (60)
the following first-order expression is obtained:



I -

"PO

- f(+u)d - (62)
0

which way be converted to N differential equation for the path ard amplituce of the shocks
expressed by:

dt' / \
Of I +U ) (63)dr \ / c o

0
ul and u, are determi'6d by the continuous solution given by Eq. (59) for the wave parts
between the shocks, thus giving together with the Eq. (63) a system of equations to be
solved giving ul, u2 and t' within the weak-shock theory.

At very qieat distances from the orivin the formulas derived by the use of weak-shock
theory will be inaccurate owing to reduction in the shock strength leading to a eispersed
shock, whici, n. longer may be approximated by a discontinuity. :n order to estimate the
point beyond % zich the weak-shock theory gives inaccurate results, the decay rates of a
sawtooth ware and a small-signal wave may be equated leading to the following approximate
expression Cor the maximum distance x at which the sawtooth solution, and thus the weak-
shock theory, is valid: m

Xm . 1/a (64)

which shows good agreement with the upper limit of the sawtooth region given by Eq. (52).

It should be noted that, in order to use the weak-shock theory at all, the nonlinear
effects must prevail over the dissipative effects. This may, by the use of the acoustic
Reynolds number r, be written as:

r >> I or )2 k >> a (65)

where a is given by Eq. (52).

The formulas given above *or the weak-shock theory applied to the plane wave case
may be generalized for kr >> I also to comprise cylindrical and spherical finite-ampli-
tude waves [7].

3. PROPAGATION IN A RELAXING FLUID

The reestablishment of thermodynamic equilibrium in A fluid normally takes place very
fast, i.e. the time scale for the processes leading to reestablishment of equilibrium is
normally much smaller than the time scale characterising the variation of properties with-
in acoustical waves. Terefore, in most cases it is a good approximation to consider that
the fluid remains in equilibrium during the wave propagation.

Some molecular processes are, however, so slow that the time for establishing the
ncw thormojynamic equilibrium, the so-called re xation time T, becomes comparable to the
period of the propagating disturbance. Thin is the case in, for instance, energy transport
from extexnal to some retarded internal degrees of freedom for some chemizal reactions
taking place between the components of the fluid.

The intensity of the irreversible processes taking place during the restoration of
the thermodynamic equilibrium and leading to a dissipation of energy depends on the 'e-
lation between T and the angular frequency w of the propagating wave. It is characteristic
for all relaxation processes that an acoustic wave with a frequency high enough to yield
wT >> I will propagate with a phase velocity c which is higher than the phase velocity
Co with which a wave satisfying wT << I propagates. The high-frequency signal (wT >> I)
suffers no increased absorption due to the presence of relaxation, i.e. the Internal de-
grees of freedom act as if "frozen", while the low-frequency signal (wT <- 1) attains
thermodynamic equilibrium at all times during the wave motion due to the slow change of
state in the long period wave.

Owing to the lack of thermodynamic equilibrium during the relaxation processes, it
is necessary to specify one more thermodynamic variable in the equation of state for a
fluid. Such a variable , characterizing the state of non-cquilibrium considered, may
for small deviations from equilibrium be determined by the simple first-order reaction
equation:

-= - (66)

where 0 s the equilibrium value of E.

Thus, the equation of state for a relaxing fluid may instead of Eq. (20), be written
as:

p = p(D,s,) t67)

On the basis of the equations of continuity and motion correct to second order, the
following two equations governing the propagation of finite-amplitude waves in a relaxing
luid may be derived:

Btsp

Is (B~'~ au o =--- 2  (68)

L at .at,

S- -A ,2p 0
2 

at' 0t' -
0 0



where B = (ap/a)p is a small quantity of the order M u oC and where M=(C
2
-o)iC

2 
< 1

represents the di.persion.

Eqs.(68) can be merged into the form of a single equation similar to Burgers' equa-

tion, which may be written:

_r a +1 a E +i)U_1 (,U L. rr a 2u()
aT7T D - - . - +2

/ c2\ 2A (69) 2 0  t'

For (T << 1 and by assuming au/ax = 0, a steady-state solution to the Eqs.(68) can be
k found describing the structure of single steady compression jump of amplitude 2u by:

l(u+ U) <- u2
T . In 0 0(70)

where K = mc0/[(B/A+2)u 0] and t' is a constant of integration.
0

K is a characteristic quantity for wave propagation in relaxing fluids. It expresses
the ratio of the relaxing to the nonlinear effects, and thus it serves for a relaxing
fluid the same prrpose as f does for the thermoviscous fluid case.

If K >> 1, a relatively mild nonlinear effect exists and the solution Eq. (70) re-
duces to:

u = u tanh(t'/2er) (71)0
for the amplitude of the velocity jump.

For a periodic finite-amplitude wave in region II, where the nonlinear and the re-
laxing effects are of importance, an approximate solution of Eqs. (68) can be obtained
by combining the solution in Eq. (70) or Eq. (71) with the solution describing a sawtooth
wave (Eq. (48)).

u = i y + n tanh

where I+o
= r 1 (2
n (B/2A+l)Re

with

0

Re = U0/CoWTm (Reynolds' number for relaxing fluid).

For K > 1 and K < 1, i.e. stronger nonlinear effects, the factor tanh(y/A) should be
replaced by u = u(y) found from the solution of Eq. (70). The form of one period of a fi-
nite-amplitude wave for K > 1 and K < i, respectively, is given in Fig. 4.

Thermoviscous effects, relaxation effects, nonlinear effects
and diffraction effects may all be included in a compnund equa-

6. tion which for a quasi-plane wave case may be written in dimen-
Y sionless form [22] as:

3V av a 2 V Y a WT /a-- - G D - y )+av ... . .v a = a i_ av
aj aoa p a3 2  3 - )Y 4 kac ac

" (73)
Y where V = u/u0 and C is a diffraction variable.

K>1 Eq. (73) has the following properties;

(i) for G40 and D=N=0, it reduces to Burgers' Eq. (40) for a
thermovi3cous medium (G = r-1);

shape of oe period of (oif for D+0 and G=N=0, in the limit of i << 1, it reduces to

a fpnite-amplitude wave a symbiosis of the Korteweg-de-Vries equation involving
fonlinearity and dispersion and Burgers' equation involving

propagating in a relax- nonlinearity and dissipation (see also Eqs.(68);
ing fluid in the case (iii) for Nl-0 and G=D=O, it reduces to the equation governing
of t < 1: (a) for the the diffraction influence on the nonlinear wave propaga-
case of K > 1 and (b) tion.
for the case of K < 1.

4. EXPERIMENTAL STUDIES

A great number of experiments have during recent years been carried out in order to
verify theories discussed above or in order to seek clear experimental information concern-
ing different aspects of finite-amplitude wave ;ropagation without the purpose of verifying
a theory. A number of tests have further bee oi.iented towards the development of new ex-
perimental equipment and procedures for its use.

The subjects for experimental investigations may roughly be divided into three main
groups. (i) The nonlinearity of the pressure-density relation of the fluid expressed by



the nonlinearity ratios B/A (second-order terms, see Eq. (21) and C/A (third-order terms,
,I_, see Eq. (22). (2) The growth and decay of the harmonic content of the finite-amplitude

waves during propagation. (3) Absorption measurements.

Determination of the parameters of nonlinearity B/A and C/A has mainly been performed
using static, thermodynamic or finite-amplitude waveform distortion methods, of which the
thermodynamic method has been the one mostly used. Knowing from experiments how the sound
velocity in a fluid depends on pressure and temperature the sound velocity derivatives in
Eqs. (21) and (22) may be determined. These derivatives form the most crucial factors of
the equations for B/A and C/A and the other terms may be found through standard thermody-
namic laboratory procedures. Some B/A and C/A values for various fluids are given in
table 1.

Fluid ( at atmos-
pheric pressure) TE[C] B/A Fluid TL°cJ C/A

Distilled water 0 4.16 Water
Distilled water 10 4.63 los N/m

2  
30 32.0

Distilled water 20 4.96 2 x 10: N/m
2  

30 38.6
Distilled water 30 5.22 4 x 108 N/rM 30 32.5
Distilled water 40 5.38 8 x 108 N/a

2  
30 26.0

Distilled water 50 5.55
Distilled water 60 5.67
Distilled water 80 5.96 1 Propanol
Distilled water 100 6.11 10s N/m

2  
30 75.0

Carbon tetrachloride 30 11.54 8 x 10' N/m
2  

30 25.0
Glycerine 20 8.80
Mercury 40 8.33
Methyl alcohol 30 9.62
Ethyl alcohol 30 10.57
Propyl alcohol 30 10.70
Liquid nitrogen -199 9.69
Liquid oxygen -199 9.5f
Monatomic gas 20 0.67
Diatomic gas 20 0.40

Table 1. B/A and C/A values for various fluids.

Investigation of the growth and decay of the harmonic contents of finite-ampli-
tude waves during propagation is very much tied lip with the determination of B/A and C/A,
both optical and electro-mechanical devices have been used for the experimental study of
finite-amplitude wave distortion in various fluids. A detailed account of these studies
z.nd their results may be found in Reference 17).

Nonlinear absorption, i.e. energy transport from the fundamental to its higher har-
monics and the higher dissipation rate at the higher harmonics, appears from Eq. (74) for
the effective absorption coefficient a . a is the absorption coefficient for waves having
the infinitesimal displacement amplituae Fo"

1. 3u2j fB
=1+ 4-- + 1) exp(-2ac) (l-exp(-2nx))

2 
+ higher order terms. (74)

The effective absorption is compared with the infinitesimal amplitude absorption
(linear relation) in Figure 4, which shows the relative pressure amplitude measured at
various distances x from a finite-amplitude wave source for a number of source amplitudes
Pr(O). These experimental results published by Lester [231 show the existence of a de-
finite upper limit to the sound pressure amplitude which can be transmitted across a given
distance, i.e. the existence of acoustical saturation.

CONCLUSIONS

jI The development of nonlinear acoustics began in
I a1755; because of its ability to subsume different phy-
-.20 sical processes with its methodology and to contribute

solutions to practical problems, it has been strenghtened
during the years. It is therefore to be expected that
the growing recognition of the importance of this field

x. of research might result in a situation where an increas-
ing number of research and development centres round
the world are involved in solving problems comprising

Iem elements of finite-amplitude wave propagation.

2 4 6 1 ~OP.

Fig 5. Relative pressure amplitudes I
of finite-amplitude waves measured
at • rious distances x from a source
of amplitude Pr(0). 4,

• *1
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SUMMARY

A brief account of the history and the fundamental theory of nonlinear interaction
of finite-amplitude sound waves is given leading to the introduction of the concept: "Pa-
rametric acoustic arrays". Low-amplitude wave interactions in absorption and spreading-
loss limited parametric transmitting arrays are discussed for continuous and pulsed pri-
maries and for field points outside or inside the interaction region. High-amplitude wave
interactions leading to nearfield saturation limited paramE "-ic transmitting arrays are
further treated for field points outside and inside the intezaction region. The parametric
receiving array for low- and high-amplitude pump waves is discussed and finally is given
an exposition of the possibilities for obtaining an improvement of the parametric con-
version efficiency for low- and high-amplitude wave interactions.

INTRODUCTION

The generation of sum- and difference-frequencies by the interference between two
finite-amplitude sound waves has been the subject of discussion for more than two hundred
years. Helmholtz (1) and Lamb [2] credit the original observation of difference-frequency
tones to Sorge (1745) and Tartini (1754). Since then the subject of difference-frequency
wave generation has received the attention of several authora but only the last 15 years
have brought a strong development in the practical exploitat if the finite-amplitude
wave interaction products, in particular the difference- and rrequ.ncy waves, while
earlier works seem to have considered the effect as an occasi.. , undesirable nuisance
or as a rather academic subject. The practical exploitation of the nonlinear sum- and
difference-frequency wave generation in particular for underwater sound purposes has par-
ticularlv through the last 10 to 15 years went through a rapid development, and the spec-
trum of Ids of underwater applications now includes parametric transuitting and receiv-
ing arrays for echo-ranging, for bottom an(L subbottum profiling, for marine archeological
detection of burried artifacts, for selected mode excitation in shallow water sound pro-
pagation and for ultrasonic imaging in medical diagnostics. The development hitherto in
the iield of parametric acoustic arrays gives no hasis at all for an expectation of a fu-
ture reduced research activity in studying and developing new fields of application of
thv parametric acoustic arrays and in improving the parametric acczstic arrays aiming 2.
a better adaptation to fields where it alreacI is being used.

I. HISTORY AND FUNDAMENTAL THEORY

The heoretical work on nonlinear interaction of two sound beams - or, in different
words, the scattering of sound by sound - begins with the papers of M.J. Lighthill on
sound produced by turbulence [3], [41. fie transformed the basic equations of fluid mecha-
nics into a form being particularly suited for the study of sound generated aerodynamical-
ly. Lighthill's exact equation for arbitrary fluid motion can be written as:

- c V2 p = -ca 2p = (1)
at, 0 0 axi x(

r T. P c2p6 + Di,, with D comprising thc vi3cous stresses.whreTj ~ i 3 0 i io 13 D3 ij

Pu u is the instantaneous Reynolds stress tensoL, p . the non-viscous stress tensor
and 6 ]the Kronecker delta. In effect, the sound field Iradiated by fluid flow - in-
cludi4 the interacting sound beams - is equivalent to one produced by a static distribu--
tion of acoustic quadrupoles with source strength density given by T I'

In the far field Eq. (1) reduces to:
Irr.f 1 2 r-R0--l _ __ T - 3(k, t - =ZdV (2)

0 o 4nc2 r c, ct
0 0 0

where R and r denote the position vectors from the orluin to the location of the observer
(i.e. The finld point) and to the differential volume dV of the zone of volume Integra-
tion V, respectively.

In their analysis, Ingard and Pridmore-brown [5J began with this equation, neglected
viscous losses and derived the following expression for the far field amplitude of the
pressure at the sum freq:uency, p+:

= 47a3 £(f+f)2 -- s2 n 2 i 2 in (3)

Here fl, f2 are the primary beam freqnercies, a the radius of each source, P1, P2 the pri-
mary beam pressure amplitude at the centre of the interaction region, r the distance from

X,
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the interaction region to the receiver, 0 = angle between the first incident beam and the
receiver, and the angles a, 8 are defined by

a = (2[fl-(fl + f2)cosO] 2 - 2na + f2)sin0 - f ]
Co c

In their attempts to verify the theory, Ingard and Pridmore-Brown obtained an intensity
of the scattered signals being about 10 dB below those expected theoretically. Westervelt
[6] developed another theory for the interaction. fie used the expansion of the pressure
in terms of the density and deduced the following equation for the lowest order in the
scattering process:

02 I = a2  + 1 2

0c axiax 0 
u
.
u) 2\a )' J4

0 ij 0=
where p is the density in the scattered wave and the nonlinearity parameter B/A is re-
presented through the term: (2c

2
)-'(a

2
p/ap2) o= B/(o A).

0 P=Po 0
Fot the case of two mLtually perpendicular beams, Eq. (4) reduces for harmonic ini-

tial waves to:

s = 2 [OP- o p C" ), ( ) (fPC

00 - 2ew 2c2,ap
2/ 7~~~\t a//' o0 0 P=Po Pow-

where the quantitie!s p, and pz -efer to the excess density in each of the primary sound
beams. in a subsequent paper Westerwelt (7] generalized nis theory to comprise 'he case* of two collimated sound beams intersecting at an arbitrary angle.

The case of two collinear sound beams was treated by Westervelt [81 in a paper whcre
he noted that the nonlinear terms made the beam act as a distribution of sources for the
modulating frequency. In [81 and in parciculr in [9] Westervelt formulated ht now
classical theory for the parametric acoustic array, a name given to the collinear sound
beam interaction region due to its rasemblancc to the corresponding sonar array. The fol-
lowing simplifying assumptiors and app-oximations underlie Westprvelt's work:
(a) The equation of motion for an ideal fluid is ured and the attenuation effecL is in-

troduced in an "ad hoc" way.
(b) The two superimposed, high-frequency, plane primary waves are as.umed to form beams

so narrow and so pei'fectly collimated that the volume distribution of ,ources may
adpquatel,, be represented by a line d-stribtion located along the a:t3. of the prima-
ry wavPs. The cross-sectional dimensions of the primary wave interaction region are
asdumed to be small compared with tne wavelength at the differe nce frequency.

(c) No attenuation of the difference-frequency 'ave is assumed to occur.
(d) The amplitude attenuation jefficients for each of tVu two primary waves a!, equal

and essumed to be one or more oeders of magnito'de loss than the wave numeer of the
difference-frequency wave.

(e) No.linear attenuation is negligible.

Rewriting (1) on the basis of the assumptions (a) to 'e) and us;ng a )exturbation
analysis retaining terms to second ordur i% the f:.eld variables only, Westervelt's quasi-
linear approach led to the following inr-.mogeneous wave equation for the pressure ampli-
tude ps of the difference-frequency wave:

°p=- Po a.q (6)
0at

where
q= a P2 (7)

q is the source strongtl. density responsible for the jeneration of acoustic energy through
the nonlinear interaction of ihe primary waves in which the instantaneous pressure at a
source point is p . 8 is relutted to the second order nonlinearity ratio B/A of the fluid
tnrough: 8 = 1 + A/A, while axpression (7) is valid for plane waves travelling in the same
direction, a general expression for the source strength density q of a primary field of
any configuration may be found in [101.

The general solution to the equation C6) may be written as a volume integral by:

PS
(
R

t ) = - d. (8)R-r

V -

The volume integral (8) was used by Westervelt for a derivation of the difference-
frequency sound field generated by the nonlinear interaction of the two perfectly colli-
mated, plane, monochromatic, collinear, primary waves of equal source amplitude p0 . His
expression for the pressure amplitude p as a function of the distance R from the pro-
jector emitting the primary waves to thg observation point and as a function of the angle
0 between the observation point and the acoustic axis of the projector may be written as:

8= s Io -p5 CR, 0) - o 1(9)
S 87p C4Ra

0 0 0 (1 + Ls (sin 4C2))
o

here the time and phase dependences have been omitted. ws is the angular frequency of the
wave, S d the cross-sectional area of the collimated wave ra-
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gion and k denotes the wave number of the difference-frequency wave. a is the mean ab-
sorption coefficient of the primary waves for infinitesimal wave amplitudes.

Westervelt's solution (9) is restricted to the farfield of the scattered wave by the 17 3
condition: k R > (ks/ao) 2.

4The bracket in (9) leads to the half.power beamwidth 
0 h of the difference-frequency

wave given by: 
h

eh u 2(ao/ks) %  (10)

which shows that a narrowing of the beam takes place for a decrease in the primary wave
frequency, opposite to what is the case for a conventional linear projector. Further, a
narrowing of the beam will follow an increase in the difference-frequency. It should be
noted that the influence of the primary frequencies on (9) and (10) is only through the
absorption coefficient ao .

The difference-frequency signal amplitude p may be considered to be radiated from
an array of sources distributed continuously thr~ughout the interaction r'-ion, being
bounded by the collimated beams and extending a distance along the acoustic axis deter-
mined by the small signal absorption of the carrier waves. The parametric array is shaded
by virtue of the naturally smooth decay in the conversion of the carrier frequency waves
to the difference-frequency wave with increasing distance from the signal source. The
shading of the array, being due to the carrier wave absorption and diffraction within the
interaction region, gives rise to a monotonically decaying angular response of the diffe-
rence-freguency wave with increasing e-values, thus a7oiding the undesirable minor lobes
that are common in conventional piston type transducers. Due to the small width of the
interaction region compared to its length the parametric array produces a field of radia-
tion much narrower than the one which would be produced by a conventional underwater sound
source operating linearly at the difference frequency. Moreover, the wide band character
of the parametric conversion process enables one to remedy some of the disadvantages of
the rather low efficiency of the nonlinear conversion process by the use of wide-band sig-
nal processing techniques. In spite of the low source level efficiency - ranging form 10%
down to 10-s% - systems employing parametlic arrays can be superior to conventional linear
systems when the reduction of the beamwidth, the transducer size or the absorption - due
to the low difference frequency - are taken into account.

Since Westervelt's publication of his quasilinear approach leading to his aymptotic
solution being valid at long ranges from the interaction region, a great deal of theore-
tical and experimental works has been done in order to improve the understanding of the
characteristics of the parametric acoustic arrays.

The aperture effect due to the finite size of the projector, which should be taken
into account when the interaction volume is substantially limited to the nearfield of the
projector by the rate of absorption of the primary waves has been discussed by Naze &
Tjotta Lli] and by Berktay (12]. Berktay assumed a rectangular projector of sides 2b and
2d situated in the y-z-plane and he obtained the following expression for the difference-
frequency pressure amplitude produced by the nonlinear interaction of two collimated, plane
waves of initial pressure amplitudes p, and P2:

pIp24 2SO iP(b,d,k ,Y,0)e-a s R

4np c4R (a2~ + 4k 2sna -)

where the aperture effect is represented by the expression:
(bdk O=sin(d ks cosy) sin(b ks siny sinO)

s ) = d ks cosy " b ks sny sinO (12)

with S = 2b.2d.

aT denotes an absorption coefficient determined by:

uT=a + a2 - a sOS01 + 02 - as  for e << 1.

al, a2 and a are the absorption coefficients of the primary waves and the diiference-fre-
quency wave, Srespectively. y is the angle between the z-axis and the radial distance R
from the centre of the projector (x,y,z = 0,0,0) to the observation point.

For a circular projector the (sin(N)/(N)) in (12) will be replaced by (2J1 (N)/(N)).

For spherically spreading primary waves confined to a cone of angular width 20, and
by assuming a uniform intensity distribution across the cone, Berktay found for the diffe-
rence-frequency pressure amplitude along the axis of symmetry:

-a R

(RO) = - e 1 in (1+, + (tan--,a l (13)
2p c 2 h h2o oR k.

where zh is given by:

p = (910h) (ks/aT)(i - COS('p))
2

and where the half-power beamwJdth Oh (for the expressions (11) and (13) is given by:
Oh  2 (aT/2kS

)  
for a T/2ks << i (14)
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a T is for the sperical wave case given by:7 T al + a2 - acoscos a, + a2 - as.

Berktay's asymptctic solutions (11) and (13) are valid for the field point at long ranges
from the interaction region.

The plane and spherical waves hitherto discussed form parts of the wave field arising
from a piston source embedded in an infinite, rigid baffle. Some characteristic source dis-
tances nhall briefly be defined in the following due to the fact that piston sources have
most frequently been used for primary wave transmission by the no.linear interaction be-
tween twc finite-amplitude waves taking place in the parametric acoustic array. For a pi-
ston soarve of area S, embedded in an infinite, rigid baffle, operating simultaneously at
the angular frequencies w, and W2 (wave numbers k, and k2) the wave fields can be treated
as plane collimated waves within a distance - the Rayleigh distance or the collimation
distance forming the nearfield of the primary wave source - expressed by:

Rr = kS/(2n) = SIX (15)

where k = k(k1 + k-2). At distances greater than R the primary wave field can be repre-
sentqd 2s spherically spreading waves. r

The Fresnel distance may analogous be expressed by:
Rf = S/(4 0 ) (16)

Empirically 1131, it has been found tnat a source radinis ;R = S/(2X_) provides acceptable
agreement with experimental results, thus forming an effective radius of a spherical wave
source.

Using the down-,hift-ratio H = k /k = W /w , (with wo = k(tI+W2)), tne difference-
frequency wave collimation distance ma? bg defne through:

Rs = R r/Hs  (17)

The half-power beamwidth 0 of the difference-frequency wave may under certain circumstan-
ces asymptotically approach that of the primary wave at a source distance given by:

R0 = RrHs  (18)

The possibility of shock formation in the primaries necessitates the definition of a di-
mensionless "saturation number" X [lI], being expressed by:

X = Rr/Z , (19)

where Z is the "discontinuity distance".

2. LOW-AMPLITUDE WAVE INTERACTIONS IN PARAMETRIC TRANSMITTING ARRAYS

ABSORPTION AND SPREADING-LOSS LIMITED ARRAYS

Low-amplitude (finite-amplitude) waves are waves whose peak amplitudes are below their
respective shork formation threshold by means of which nonlinear absorption can be neg-
lected.

Westervelt's farfield approximation, treated in section 1, for the difference-frequen-
cy signal generated by nonlinear interaction of infinitely plane, unsaturated primary
waves of finite-amplitude only subject to viscous absorption and the extension of Wester-
velt's theoretical approach to include the difference-frequency signal generation by the
nonlinear interaction between two monochromatic, unsaturated spherical waves emitted by a
circular piston projector discussed by Muir [15] and Muir & Willette 116) are examples on
low-amplitude wave interaction parametric transmitting arrays.

If the nearfield primary wave absorption loss (TRR >> 1 Np) to ensure that the pri-
mary waves are sufficiently absorbed within R to such ran extent that no further nonli-
near interactions take place beyond R , the p~rametric array is termed: absorption limited,
and Westervelt's solution can be used rfor a determination of the difference-frequency sig-
nal If aR is very small, the primary wave interactions take place predominantly beyond
R and thg array is essentially spceading-loss limited, which demands the use of a sphe-
rical wave solution for the difference-frequency signal.

While the absorption limited arrays are characterized by a farfield half-power beam-
width of the difference-frequency signal given by expression (14), spreading-loss limited
arrays (also including some viscous absorption effects) will show a half-power beamwidth
increasing with the source distance r and asymptotically approaching the half-power beam-
width of the product of the primary beam directivity patterns. The two half-power beam-
widths may become equal at the source dist3nce R0.

The validity of the asymptotic solution derived for the parametric array (using
Rutherford's scattering formula) demands that the field point (point of observer) is far
outside the interaction region, but volume integral solutions have been derived for field
points in the interaction region. The use of continuous or pulsed primaries will influence
the parametric wave generation process. rurther, the question whether most difference-fre-
quency signal generation takes place in the near- or in the farfield of the primary wave
projector - or is shared between the two fields - car be replied to when the primary wave
frequencies, their source level and the size of the projector are known.

The subsequent discussion may therefore appropriately be subdivided into discussion
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of procedures and results arising from (a) field point outside or inside the primary wave
interaction region, (b) continuous or pulsed primaries and (c) predominant near- or far-
field interactions. 75
a. Field point outside the interaction region

(i) Continuous primaries

The absorption limited, predominant nearfield interaction, arrays are represented by
Westervelt's [9] and Berktay's (12] approaches discussed in secMion 1. Another method for
predicting the performance of parametric transmitters, publishea by Mellen & Moffet [18],
121), uses a W R as the basic parameter for absorption/spreading-loss limited arrays. Their
model combin 'the simple plane and spherical solutions by adding the difference-frequen-
cy wave contributions from sources in a well-collimated end-fire array (r < R ) and from
sources in a spherical region (r > R0 ) having a directivity given by the product of the
primary directivity functions.

This model has proved to be of considerable use for calculation of the parametric
efficiency in cases when the field point is sufficiently far from the source for all
points in the interaction region for which diffraction is important to be represented as
being at the same range. Their general expression for the parametric sonar source level
efficiency (i.e. the ratio of the difference-frequency to the primary source levels) can
be written as:

X k '2 e- 2a r (
020

where it is assumed that the primary waves were of the same initial amplitude p0. Neg-
lecting finite-amplitude absorption CX < 1) and assuming that the parametric array is ab-
sorption limited at r < R , (20) reduces aymptotically to the Westervelt case, which may _
be easily verified by insertion of: '

p k R

and by the use of (15). i
The square dependence of pton the down-shift-ratio (p at and on the primary wave

amplitude po for interactions iR the collimated beam region~shou~d be noted by (20).

For X < 1 and 2a R < 1/Ns , i.e. the array is spreading loss limited in the farfield
of the primaries wher8 ost of the difference-frequency generation takes place, expression
(20) reduces to: jRp /(R p )j = X/2Ck /k )E(C2a R0) where EC) is the well-known exponen-
tial integral function. h linear dep~nd~nce o the down-shift-ratio, i.e. p = s

represented by this expression for the farfield nteractions l t should be noted. In the general case, when both near- and

farfield interactions contribute to p , the exponent ef the
down-shft-ratio is between 1 and 2, hich also has been
experimentally verified 120], [21].

Bpk R

Numerous authors have contributed to our knowledge
The sfarfield interaction predominates. Two way f handling the

ForX 1 nd2a <I/ ,about the ari spreadingloss limited inay ( the <<1N)rfe

of t p ageometry of the array have been prevailing. The first is to

approximate the interacting signals as one-dimensional pro-
pagating waves [19] and the second is to perform a thre

pdimensional integration [16].

oerktay & Leahy [191 considered the interaction taking
place in the farfield of a piston projector. Their geometry
with the proje or surface in the y-z-plane is shown in Fi-

Figure 1. Geometry accord- gure I. The fa r1d beam patterns of the primary waves of
ing to ref. (191. angular frequet :ies sc and i2 can be represented in the

form:dm,2 - i, a + ikt,2)r (21)

p1,2 = - D"- D2(Y,¢)e 21
where D1,2(yB) are the normalized directivity functions of the primaries. P1,2 denote
the source amplitudes of the primaries.

The dfference-frequency pressure at the field point cHan) in Figure 1 can now be
written as:

F, -Ca + fjkl ,2) 2Y~

P5 ,e cosy dy dO (22)

i4sp c R 5) J T-J (T+Jks(1-v))
where v 1 - t li-0)u - t pi-.)d

.

The double integral in (22) is the two-dimensional convolution of the product of the
primary directivity patterns (weighted by cosy) with direotivity function

S .
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D(O,n) = (l j(k /a(±-cosO'cosq))-, whiclh is the Westervelt directivity function (9)
transferred to Sthw coordnatu system given in Figure 1. For extremely narrow primary
beams and for D:() = D20, (22) reduces to the Westervelt case, and when 0h given by (14)
is much smaller than the beamwidth assccia.ed with the product D10D2(0, " the difference-
frequency beam patterns become the product of the primary-frequency directivity functions.

Evaluation of (22) for both a rectangular and a circular projector embedded in an in-
finite, rigid baffle has been given in [191. For a rectangular projector with the dimen-
sionless side lengths L and M (normalized by use of A ) parallel with the y- and z-axis,
respectively, (22) may be iewritten as:

SPs (R,0,n) - Pw(R,0)V('y,;Pz,e',,n) (23)
where

Si(: 2  ~ (a +jk )R
W2(WIW2) -h sJkl

Pw(R,0) - e

2cTRa
W1 and W2 are the acoustic power transmitted at the primary frequencies and

wh erv)) sin2(/2 /'z)

)where N = l+j(e'-y')2 + (n'-€1)2]-l

All angles are normalized with respect to,0 O0O and the half-power beamwidths 2y, aad 2 1 of

the primary beams in the two planes of symmetry--'-: u Jrv" c v tesh . are given by: irLy1 - vM0! V2. y' = Y/O I

9 €' = /8h , 'P = y1/8- and f i/e . A 8alcula-
tion of v()Yalong the acoutic axiD (6a=n'=0)
has been performed [19] and is given in Figure
2. Using B/A = 5 for water, the RMS source level
at the difference-fiequency can be calculated by
(23) through the expression:

SL_ 137+20 log(f )-40 log(OO)+10 log(Wz)+

+10 log(W 2)+20 logIVI. dB re luPa-m (24)
0 (24) can be used for an evaluation of the far-

field response of a parametric transmitter.
-20 is the difference-frequency in kHz, 6 is in

2 degrees, W, and W2 are in watts and 2 log!VI is
obtained from Figure 2, where a circular pro3ector
of radius a gives: d = 92.5/(k aO ) and a rect-

. angular projec~or of sides Z a d Mogives:
5 4y = 163/(k £6 ) and tz = 163/(kon0h).

4y o h o
A comparison between the frrfield difference-

30 7frequency amplitudes calculated by means of (20)
0_.__ __._ and by means of (23) can be performed for both

2 # circular and rectangular projectors through the

Figure 2. Pressure reduction factor, use of: a R6 = 0.650/,p2 (for circular projectors)

IVY, for rectangular, squared and and a 0. 635/(. P), (for rectanular pro-

circular transducers. 0'=n'=0. 
jecto~s. y

If X is put equal to 1 (£=R ), high, but not too high for the continued omission of
strong finite-amplitude distorti6 n and absoiption effects, initial primary amplitudes
occur. The use of B/A = 5, P = 103 kg/m and c = 1500 m/s w11l then lead to the mayimum
obtainable diiference-freque~cy source level gi9 en by:

SL_m . 20 log(f s ) - 40 log(f0 ) + 20 log(IVI/aTR0 ) + 274.dB re 1 pPam (25)

(ii) Pulsed primaries

Besides the nonlinear interactions between continuous (monochromatic) primary waves,
also pulsed carriers have been studied.

Berktay [12j considered primary waves which at the source were of the form:

Pi(t) = PoF(t)cos(wt) (26)
where F(t) is an envelope function assumed to vary slowly compared with the cos(wt)-term,

*thus covering a relatively narrow band (no components higher than W/3) in order to avoid
overlap in the frequency spectra of the scattered and the prima y waves. The time-domain
solution for the scattered wave may for plane waves, along the axis of the array be ex-
pressed by:

p5 (R,t) - o - - F (t' ) (27)
S, 16. c"Ra t

00?
where viscous absorption of the primary has been introduced. t' = t-R/cO , is the retarded

!- /
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time.

Exeriments" have shown that pulsed carriers yield a scattered ccmponent being,-,ab6 ut
dB greater than in a two-frequency parametric array [21], [221, [23]. Thbeuse of ulsed 77

carriors demands that the projector bandwidth must be much wider than the scatteied ,waved
frequency, in order to avoid interpulse distortion. (27) stresses the wide band chara~ter
of the parametric array at the scattered wave frequency.

b. Field point inside the interaction region

The full consequence of the asymptotic theory for parametric arrays cannot be met
with the field point in, the interaction region, which is frequently the case for labora-
tory tank'experiments. Two different theoretical approaches have been used in order to
calculate the difference-frequency signal level at points in the interaction region. The
first approach is based on numerical integration of a volume integral [16] and the second
is based on the introduction of a correction factor to the aymptottc theory [24].

Muir & Willette [16] investigated the generation in fresh-water of the .um- and diffe-
rence-frequency signal of two high-frequency primaries (418 and 482 kHz) transmitted by a
3-in-diameter, circular piston projector. In their theoretical approach they only consi-
dered contributions from farfield interactions and they derived the following volume inte-
gral expression for the (sum- or) difference-frequency pressure amplitude, valid for
R >> r, but approximately valid for the field point in the interaction region:

P (R,e) - 2p1P2WsS8Rr R fo e+8 f JI(kjasina)J1 (k2asina) xPS op cklkaa2  - sin 2a

(28)

-((al+a 2 )-jks )r-(jks-n
s )r' )

e Fr sinod~dodr'

with: sina = [[(sin(- )+sinocos8(l-cosi)]2+sin 2osinip] and r' = (Rh+r2rRcos4) .
is an effective array angle and R" = 3a2/4Xo with a

e

being the projector radius. The geometry of axpression
(28) is shown in Figure 3.

ara MCing a (28) was compared with experimental results show-
-ing a good agreement even for the field point in the** e interaction region, and an expression like (28) has

been used in [21] for a calculation of p in the in-
teraction region. The theoretical and experimental
findings [21] are given in Figure 4, showing the ap-

R,e plicability of the volume integral method for calcu-
lation of p5 in the interaction region.

Figure 3. Geometry used in [16].

3. HIGH-AMPLITUDE WAVE INTERACTIONS IN PARAMETRIC TRANSMITTING ARRAYS

SATURATION EFFECTS

Finite-amplitude effects, i.e. wave distortion and finite-ampl tude absorption,
in parametric transmitting arrays have been dealt with by Muir [15], Mellen & Moffett [17],
[18], Merklinger [25], Bartram [26] and Fenlon [27], [28]. In all cases, quasi one-dimen-

Zsional models were utilized among other
r I
( i•things due to the fact that the treatment

a Ith hitherto of finite-amplitude effects in
1 parametric arrays is generally based on, i one-dimensional models and frequently on

2lO theories originally formulated for a mono-

200 " i chromatic wave source. General effects ofI i I I finite-amplitude distortion and absorption
-- -in a parametric array is an effective

__ --j shortening of the array length leading to
l-- , ' a broadening of the difference-frequency

beam and a reduction in the difference-fre-
quency source level relative to the sourcei I  I Ilevel values calculated through the use

spw.s "M[ Iof expressions given in section 2. If a
paramtrc source is saturation limited,
almost certainly the saturation will occur

U0. within the nearfield, rather than the far-
l'," field, of the primary beam. For X in

LUS ~ (20) the parametric array will be satura-
02 011 2 6 1 0 ton limited in the nearfield and (20) -' , ' : '-- ~will reduce to: :; .,

--- , ". Figure 4. Sound pressure levels meusured and ;Rp educe to , ,,k'
calculated in [21]. The curve marked "Nonli- = (29)
near Theory" arises from the numerical inte- o o)
gration of a modified version of (28). which shows a linear relation between p5

and p0 at an observation point outside s* 9- \ /- -
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iheintrafi~-igibn.
the nJTh'.-oi 1n: oMeliei &-Moffett equation f6-the parametric source level efficiency

- = (I (/2) )"

where, --xsin' (r/R h), together with the small amplitude taper T exp(-c r), can be
numefcally integratld for particular values of the-d&wn-shift-raiio (ko/ks? end of ao r.

Curves for the difference-frequency source level
efficiency as afufiction of the scal6dmeah primary
-source' level SL* for the dbwn-shiftzritio-k / ' i- 10
with a' as a, Oarameter are givei in Figuig 5!. The

0 primarglourbe level SL' is defined as the-mean level
of the two i6mponint: 9LoL_ =(SLt+SL2)-; leading to

-16 .- P40. the 1 kHz sceled valdu through:
. k, SL - Si. .20 log(fO ) dB-re 1 11PPm (30)

where fo 1'(fs+fz) (kHz).

Using SLo from (.O) in Figure 5 leads for an ap-
! .. - S propriate a R -value (and for k /k = 10) to the para-

metric sour~erlevel efficiency 0 'c8nversion efficiency),
-/0o which added to SLo gives the difference-frequency source
. -- level SL by:

SL_ = SLo + 20 logIlRps/(Rrpo)I dB re 1 pPam . (31)

-60 / The asymptctic cases (20) and (29) are reflected
(tto) in the shape of the curves in Figure 5. The absorption

- teffect terminates the growth of the difference-fr-quen-
-- : [3 cy wave amplitude, leading to the square law dependence

of p on p given by (20) for input levels below a cer-.10 tainuvalue.

.90 n - No higher order spectral interactions are included
26 216 Ito 5* in the derivation of (20), but these interactions will

Figure 5. Abscissa: Scaled mean in general give rise to enhanced finite-amplitude ef-
primary wave source level SLo  fects, thus causing a more rapid decrease in the para-
primry 1wae sourze lel o metric conversion efficiency. This rapid decrease can
(dB re 1 piPam kHz, R . be seen by the dotted line curve in Figure 5.

Ordinate: Paraecric conversion The shortening of the parametric array length due

(dB). o r/(rpo).I . to finite-amplitude effects at high primary source le-
vels leads to a blundering of the difference-frequency
beam patterns around the array axis with an increase

in the sidelobe levels relative to the level of the Z.ajor lobe. These phenomena are due
to the finite-amplitude absorption dependence on the primary wave amplitudes, which in
the farfield of a directive source are greatest on the acoustic axis.

4. PARAMETRIC RECEIVING ARRAYS

The possibility of developing a parametric receiving array was first mentioned byWestervelt (9] and in spite of the fact that most efforts in developing parametric arrays

have been laid-down into the transmitting arrays in order to obtain highly directional,
low frequency sources using relatively small transducers, the parametric receiving array
has recently received considerable interest. In a parametric receiver, the nonlinear in-
teraction process may take place between a low-frequency, plane signal wave of low inten-
sity and a high-frequency pump wave of higher intensity being generated locally. The sum-
or difference-frequency signal are then received by a transducer on the acoustic axis of
the pump wave.

A discussion of parametric receiving arrays may appropriately be devided into (a)
low-amplitude and (b) high-amplitude parametric receiving arrays. The difference between
the two approaches lay in the inclusion or not of finite-amplitude effects in the pump

wave. Farfield reception was considered by Barnard et al. [29] who studied a first-order
sound field consisting of a "low-amplitude", spherical, harmonic pump wave of frequency
f1  and a plane, harmonic signal wave of frequency f2 , (f, > f2). No nearfield effects
of the pump were assumed to be involved and only the pump wave was assumed undergoingasorption (viscous). I"

In polar coordinates ((r,V, ), where 0 is the polar angle an4 is the azimuthal

angle) their first-order sound field can be written as: C' ,
":" !- (ro /~~23,(kiasinO)-ar" ' ":,

Pf = p-c rkasin ) cos(wxt-kir) + p2COS(W:t-kzz) (32)
r klasin( )

where pi is the peak sound pressure level of the pump wave at a distance ro and P2 is the 4,
sound pressure level 6f the signal wave at input to the parametric receiving array. a is
the radius of the piston pump and k2z is defined as the plane-wave phase at r, where:
z = r(sinvcosO - sin~cosvcost). The angle v in the horizontal plane is the acute angle
between the acoustic axis of the array and the plane wave front. Insertion of (32) into -
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'(8) :and iitioduction of -he viscous absorptibn-'in an "ad hod"' 'way, led46 'h& 1l6wing
"v6ltme, integral, -ipieisih6h for, the, pressure 'amplitude of the, sum- or 'dif feifi inc;; • f |

signial: t

Ps (Rd, ) 1 2npcpak. JRJ f J:'Ti(kiasinf)e J(klr±kz+jalr)

jS L

where w 6 w±b2, and r (r1+R2-2rR cosf)-, whil le .s the angle-between the acoustic
axis an& the',first null of the p i' f~rfield radiatiof-fjattern. R is 'the didtance along
the acoustic axis between the pumnp and' the riceiving ''rafsduce'r. '?3,), ia b ieen solved nu- a
merically and the results have been testedd against expariments for the sum;frequency wave; I [29] showing a good agreement, both concerning beam patterns and range (R ) for various
signal frequencies. Later works along 'the line introduced' by. (33) have begn published in
'[30] and nearfield reception has been treated theoretically by Rogers et al. [31].

The half-power beamwidth of the parametric receiver is completely determined by:

Oh = 1.9(X2 /Ro )  (34)

Only a small amount of work has been done in analyzing finite-amplitude effects in para-
metric receiving arrays. In general some serious problems still have to be overcome before
a practical system can be realized. For instance, motion of the pump and the transducer
during reception, water noise at, the signal frequency or at the sun- or difference-frequen-
cies, electronic noise in the equipinent, etc., can create serious problems for full-scale
reception. But the promising results hitherto obtained point to solutions to the problems
to be obtained in a not too distant future.

5. IMPROVEMENT OF THE CONVERSION EFFICIENCY OF THE PARAMETRIC ACOUSTIC ARRAY

The low conversion efficiency of the parametric acoustic arrays previously mentioned
is its capital weakness. The second-order effects on which it is based limit the energy
transfer from the primary beams to the difference- and sum-frequency beams.

It was pointed out by Merklinger [2N i] that if the necessary bandwidth of the transmit-
ter was available, a pulsed carrier type of transmission would give an improvement in con-
version efficiency of between 2 and 6 dB depending on the system constraints. Experimental
evidence for this prediction has later been created [21]. 100% amplitude modulation of a
primary wave was shown in L211 and in [23] to lead to a 2.5 dB increase in the difference-frequency sound pressure level compared to a two-component primary of the same total power.

From the parameters involved in the expressions (9), (11), (20) and (22) for low-am-
plitude wave interactions in parametric transmitting arrays it may be concluded, that an
increase in the virtual source strength and thus in p may be obtained primarily by the
following procedures: a. An increase in the peak amplitudes of the carrier waves, and b.
an increase in 0 and a decrease in P and in particular in c in the fluid. The in-
fluence of these parameters on the coRversion efficiency of a parametric transmitting
array has been studied in theory and through experiments in [21]. By putting the near-
field of the projector under pressure, cavitation effects could be avoided and the near-
field liquid was replaced by liquids showing more appropriate 0, p and c values (me-
thyl and ethyl alcohols), which led to an about 15 dB increase in ?he difderence-frequen-
cy sound pressure level. Further, it was shown in [21] that some essential dB's at the
difference-frequency sound pressure level could be gained through the use of an acoustic
lens effect and through the use of a slow-waveguide antenna effect in the nearfield liquid
cylinder, a subject which also recently has been studied by Ryder et al. (32] for a sili-
cone rubber cylinder in contact with the projector. The increase in 8 by using air-bubbles
in the interaction region of the primaries has been attempted by Lockwood et al. [33], but
without considerably success.

The disappearance of B in the expression for p by high-amplitude wave interactions
(29) points against an increase in the conversion efficiency for nearfield saturation li-
mited arrays may be obtained through a decrease in the velocity of sound of the liquid in
contact with the projector, a decrease in the primary mean frequency w0 or an increase in
the projector size (normally attempted to be kept small), which can be seen from the trans-
formation of (29) into:

-Ipsl m w2SP 0 (4Rcowo)-1 (35)
The last expression in (35) was also found by Bartram (26] through a consideration Uf the
absorption in repeated shocks.

The increase in the conversion efficiency of the parametric acoustic arrays belongs
to a research field into which more theoretical and experimental work must be invested '-

before an optimum exploitation of the parametric array can be achieved.

CONCLUSION

The nonlinear interaction between finite-amplitude sound waves has due to intensive
studies went through a fast development, leading into a practical eAploitation, since it "

was first suggested only about 20 years ago. Some problems, certain nearfield effects [34],
[35], L36], certain saturation effects, improvement of the conversion efficiency etc.,
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stildive~to~in~ teirs~ltiosbut the promising. results obtained inwtheoretical, stu-

aies-;and'iin-,li1b~toryadfllsltes hae~long- ago established the significance of
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AEROACOUSTIC MEASURING TECHNIQUES IN OR OUTSIDE TURBULENT FLOWS

by
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SUMMARY

These lecture notes deal with a fundamental phenomenon in aero-
acoustics: the motion of aerodynamic or acoustic sources relative to
the fluid and/or to the measuring instrument. Some practically impor-
tant effects on thepressure and velocity fields in and outside the
active source region are deduced from linearized wave equations with
simple source functions. The possibility of and limitations on fluc-
tuating aerodynamic and acoustic pressure measuring techniques employ-
in6 special microphone probes are discussed. Applications of current
interest are, for instance, (i) the pressure pulsations induced in the
near fields of jet, wake, and duct flows and (ii) the effects of source
convection and forward speed on the far field radiation characteristics
of jets or other aeroacoustic sources in motion.
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1. INTRODUCTION

Over mbre than two decades of extensive research in the field of flow noise an immense
Viriety of experimental measuring techniques have evolved. These may be grouped into three
main categories,

(1) Techniques applicable in the aerodynamic near field inside the active source region,
- .hotwie anemometers

- probe microphones
- optical Laser techniques

(2) Techniques applicable in the acoustic far field at some distance from the active
source region, e.g.,
- single microphoneL - pressure gradient. - intensity meter

(3) Techniques trying to relate certain radiation features to specific source characte-
ristics and vice versa, e.g.,
- causality correlations
- directional microphones
- source location and identification techniques

I It i3 impossible to discuss all these highly different tecnniques together. Rather is it
intended to concentrate here on a peculiarity of aerodynamic noise in general: the majo-
rity of aeroacoustic sources are not fixed in space but move relative to the observp- and
/or the fluid in which they are embedded. Cne may think, e.g., of

- boundary layer noise radiated from a high-speed train (pass-by measurement)
- fan noise radiated into a flow channel (in-duct measurement)
- air frame noise radiated from an aircraft in flight (fly-over measurement)
- jet noise generated by convected flow inhomogeneities.

This typical relative motion of sources givee rise to a number of practically important
effects on the pressure and velocity fields in and outside the actual source region which
are worth to be considered in the specific context of this Shourt Course on wave propaga-
tion. Proceeding from this more general scope of this lecture,we shall give a few examples
of aeroacoustic measuring techniques applicable in or outside turbulent flows.

2. NEAR AND FAR FIELDS OF SOURCES IN UNIFORM MOTION

Before dealing with complicated aerodynamic sources in arbitrary relative motion, it
may be helpful to recall here what basic acoustic equations can tell us about the motion
of simple point sources. The propagation of small disturbances through an otherwise unper-
turbed (laminar) flow is governed by wave equations. For a general non-uniforia mean flow
and a unidirectional, transversely sheared flow these were derived in Ref. [I]. In the
simplest of all flows with a constant, uniform flow (ci) in just one direction these reduce
to what is usually termed a "convected wave equation" of the form

Dt a.4 j Xa + a 0 (2.1)
t -- - 0 axiaxj

It differs from the ordinary wave equation (for U = 0) in that the partial time deriva-
tives a/at have been replaced by the substantive oerivatives

Bt at -aj

2.1 Galilean and Lcrentz transformations of linear wave equations

In Ref. (2] it was shown that a general Galilean transformation of coordinates3

xi : + 
uijx + ct ; t : t , (2.2)i i

0
performing a translation (xi), rotation (ai) and dilatation (cit) of the x1-system does
not change the character of the differential equation (2.1). It traruforms into

Lx-: - $y42C.;a y; (.:,! %.5 8.) '-- :0.(2.3)

. xjat' 1 3 0 i axiaxi:

L0
with: i. ""-" . .c.) . (2.4) "

f 3
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-We may now-just is well specify the arbitrary velocity -j so that in a ytm('mo
ving with the mean flow:-

a, :0; oi = cj ; xi = R + O~jx i~ta ; t ta

The origin xa = 0 of these new f~otJ coordinates transforms like

X + ait -(2.6)

a in the obaairvor coordinaes xi (compare Pig. 1). Eq. (2.3) then assumei the forn of an
ordinary wave equation,

____ - O =0  0 (2.7)at a2 ax ,

It was also shown in Ref. [2] that Eq. (2.7) is in~variant under a Lorentz transforms-
ticn of coordinates,

a -x, -t .a t*- cx*l/ac a a (28
- t

1 -E/.~ X2(/a) X2  X, X 3 28

a~ 2. 0 .(2.9)

To illustrate the usefulness of the above transformations, w~e will consider the sound
field of a sing~e point source which is convected paralle) to a unit'crn mean flow
(Z conat) at a constant spee'l a 9 (see Fig. 2).

x2  C
r

x2
22 x2

1C x2 x

61 --- *

X X *a1 Cx 3 i
J, x

I ' "
translation 11dilatation

rotation -------

gjF I Sketch illustrating general Fig. 2 Point source Q moving relative to ob-
ffi~ean transformation of coordinates, server P and uniform flow E.

2.2 The field of s source movinp relative to the observer and th~e flow

When 6i is in the xl-direction, with flowa Mach number M = V/a., the Galilean tr'ans-
formation (2.5' relating the ctzerver and flow coordinates may be simplified to yield

a a a
a1 M ; 32 : ~ x 0  1 +x (2.10)

If the arbitrary constant 8 is specified as

c c = C aoMc (2.11)

the origin of the systecm (b) of Lorentz cooruinates,

x,-a,1 x a0MCt a b - a xb
- 0l , -, x2 R- =2  X X2 ; X) R3 3

moves~~~~ attesed=ii h t b -Mx/a. 2.2

move3 a th sped intheobserver's system,

X . a +aM =a0 Mt - -.et a (2-13)

just as we have required for the source point in Fig. 2 with21~to (xR2RI (2.14)M a~t U

Tv-~
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The. systeqln,(b) is th, foud 40~ be unique in the sense that init the source Q is fixed in
space and the- 6ii ra v 2qain,(.5

at x

i's valid.

By contrast, in another Galilean system Wc moving with the source,

,Zxi -+ utc ; X2  +~ 4X 2 s X3 ; R) t (2.16)

the convected type of a wave equation would be valid,

+_____ a2 4b 2c L 2  1 _L (2.i7)
Sax"

2  axC2  7 s ax at ;t

In this system We of source coordinates the potential field * generated by thR source
would not easily be found. With the aid of system (b), however, this P.3blem is solved
straightforwardly.

Harmonic solutions of Eq. (2.15) read

r exp iwbt, -b/a)(.8

with rb IxX I X~X _4l, b ~' X

Thu physical meaning of the arbitrary constants bndWbc~n best be uncoveredaafter rc-
transformation of solution (2.18) into the source system (%J,t). flow system (xi,t) or
observer system (xi,t), whose physical character is more obvious than that of the Lorentz
system (x ,tb), by means of

b x aOMata x, - at a

xa xa x,
b -- (2. 19)

Xb xa -, -

CiM c c

The djetance between the source and the observer transforms like

rb /(;;,a_ a,4cta)2 + (1-M2)(Xa 2 
+ xa

2
)

A., uat,- + (1-1.1.)(x R 2)2 + (X, R (.20

/X' (1-MC')(X 2 I + xel ci 0

From the transformed exponential function in the source syntem (c),

exp i b (t b r rb/a,) (.1

ex Ib,4 tc + M0  a 1 /c2 + (1-42) (xc' 2 ',
20-e)I a(l-M2) Jc 2

't becor..es evident that the actual frequency uss, which would be received by all obselver
m Vv with 'he source, is gi-vn by

WO = f-1 (2.22)

This enables us to attributu to ! a definite physical mean~ing.

Next we will relate the second arbitrary constant in (2.18), 0 b, to the other characte-
ristic source quantity, namely its pulsation amplitude. The velocity field vi is easily
derived from the potenti.al 0 according to

-!L a Lo1-a *a (2.23)

with, e.g., the streamwise component -,

fc b b b
V4i + 0 - bj~ b4 rb bx /e(a.) (2.24s) ---/1a-14. Mc rbJ2

I "l
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or the triniverse~component b -x iw(b r a)

A" { ..- +b J U rb-
This flow field includes the limit case of qupei-steady linear perturbations of an :da
compressible fluid. The corresponding condition,ea

W b ' or - < (2.26)
ij a _ b a o

defines a noar fi*Zd close to the source in which the -pL .oat.rM-amplitude of the sour'ce
can. be determined directly from

:x c=0): = biep t (2.27)

For doing so, we compare this with the radial velocity of a sp. source (of stzrength
AO) in a uniform medium at rest,

Vr-T-Texp iwot (2.28)X

where now r is the radial distance from zhe source. Wheni equzating 9

0b = ',2.2')

it should be born in mind, however, that for Y, 1 0 tie pu!sation amplitude of the
source as we have defin-d it is no longer uniform in all three directions. In the stream-
wise direction,

:,xc x 0) -exp -1w,t ,(2.30)

the source issue3 fluid into its imsv--
(A) B diate vicinity (cutwards and inwards)

at a flow=P that is redueo-3 by a
factor A cM relative to that icsued
in a direction norrial to the flow asI ~ /illustrated in Fig. 3. Yhat was tniti-

0A/ ally assumed a simple monopole type of
xCA a source or a vulsating sphere in theX2  I 2 Lorentz transforedi system (b) may now.M2A, be identified as a pulsating ellipsoid

xC in the physically more obvious systemX ;7 3 (c) moving with the source. That simp-
I \ /ly means that we had to assume a slight-

/ \. / ly aifferent point source in the system
/ (b) with a correspondingly modified po-

tential function instead of Eq. (2.18)
J if we were particularly interested in

a source of which we unambiguously knew
that it behaved like a monopole in sys-
tem (c).

Fig. 3: Structure of monopole source in the
Lorentz-transformed system (b) as observed in After the constants wb arnd Ob in Eq.
system (c) moving with cource, (2.18) have been specified, we may de-
(A) in plane x, = 0 (B) in plane x, = 0 . rive the pressure field as

~f , 4 ,x ait i lu )_________
&P"i't) -: + a :~ .f..*. --- )+ Vic.--.- I p exp iwb(tb-rb/a.). (2.31)

In the hydrodynamic or ae-cdynaraic near field induced by the source the second of the
two terms in curly brack:ets again dominates the first yielding a particularly simple re-
lation~ship between the local (qiiasi-incompressible, pressure and the streamwise velocity
fluctuations (Eq. (2.24a)),

p = o,a,M4cv0  1 (a (- 5) 1 ., (2.32)
In the radiated far field, on the other nand,

a, (2.33)

the acoustic pressure field can be written in terms of the observer coordinates as

p 1- ex i0,s0A f (I-MMc)t + M -
1 -M (2-34J)(1c b1 14' 'I 1aM b epc , ca,

c~ a

4
wit A -'- M7 X j I-,[" i x tc k,;-, -y' .

Z~..--, j~.j .
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In a d imilar ma nner one may obtain the sound field of more' .;Omplicated higheir order
souircs- byi6difyihgj the solution (2.,18) correspondingly,.-Here it may suffice to derive

l e vain-th ope'r'.enz ei'' ohits - convective amlkcto fLztors for a simpleearon6ua'Dopjgter'fre ueti cordiat dapi ia o

2. 3' Tho 'Vkrious _pactichi effects of relative motion

Consider a subsonic (Me-c 1), straight-line, uniform (i.e. not accelerated) motion be-
t~die'a simple iource'and',the ambient fluid and an-arbitrary motion of the observer paral-
lel'to the lormer' Eq. (2;34J) then shows some important effects the motion has when com-
pared to the presre field the same source would generate in the case c0

ipowOOAO
p(r,t) 4r exp acw0(t-rNag) .(2.35)

r Here and in the following r will denote the ins tantaneous distance between the observer
and the source. If both move relative to each other we have (compare Fig. 2)

r = Ax, -50 2 
+ (X2 - R2)Z + (X3 - R3). (2.36)

Two quantities ai-e of partic-ular interest in practical noise problems, the amplitude
V and frequency wi of the pressure field. The latter is known to undergo a so-called Doppler

frequency shift due to the relative motion. Its most general form may be deduced if we de-
fine w as the time derivative of the exponential function in Eq. (2.34),

The most convenient form fo ndwi probably in temsofM , Mb) and the instantaneous
angle 0(t) tbetween r(t) and the direction x, of the relative motion. With

r r

and-'hence

_______ cexp ie cco
p~. t) (-M co.- p~,A/1-4ar ./1?2iz~M (2.38)

/ cMsiz I - n P a, I

we may define the followinEg. generally time-dependent parameters of relative motion,

- 1 -(Me cos /1-142si 5
M) . iPOUCAO

,with p, r- (2.39)

70 1 M~c- (Mc-M)(cos OlrI/1Mc -inl*)} (2.40)

Because these are rather complex functions of space and time it may be worthwhile looking
into three specific source/observer configurations separately (compare Fig. 4).

(a) Suc n bevra~oci~ec
(b) Jh

I This special configuration is charac-
-. * terized by

0 0  , r =x, a.t /.Ai!rb

-. * and hence Eq. (2.34) reduces to
xp(r,t) (2.41)cJK 0 ?(a)-*C iP'WCA, **c

L ot -x -X, Ot fMc exp ai* 1+. t a, Ixl.- I.~' j+, 77

X3 In this form Eq. (2.41) also indica.
tos the apparent phase velocity and
wave length a fixed observer would
register. The corresponding parameterFig. 4: Source and observer in arbitrary rela- ratios were listed along with the am-

Five-motion. plitude and frequency ratios in
Table 1. ~

(b)Sureadosre asgeah th

This configuration is characterized by J -

900 , t x1 , r /(X2 - R' +x U R 3) rb[-

so that the pressure may be written as ~-'''-"



(c) Departing '(b) Passing by. (a)Appodchi = - exp :(2 )-i

_ _ _ _ _ at that very moment. The amplitude
.1+ " dan fre4uency ratios (according t6

1 I- c Eqs. (2.39) and (2.40))were again
Armphtude . LI-~ ~ 1- listed on Table 1. -

Fequency -- J (C) Soureand observer de~artn(
1-M 1-MM ~ 144 from each other

Fre 1
-M 1TM 14M This situation with

r= °  r= at - x,= -rb

Wave length - 1-MC 14m resembles that of case (a) with

p(r,t) = (2.43)
v. 1-M 14M iPOWOA, - -

00'L'+' j_ _ _ _ _ - ~ wi exp i. t4t - -I- L'

now showing the wave propaga-
Table 1: Unified convection effects for specific source/ tion in the negative x1 -direc-
observer configurations as illustrated in Fig. 4. tion. The characteristic para-

meters were again listed on
Table 1.

The above described effects due to source convection hold for any arbitrary values of
M and Me at long as

IY~j=cI - iEI/a, 1 .(3.44)

The corresponding formulae for IM.c > I -rce easily obtained in a similar manner.

2.4 Three special cases of relative motion

There are several ways of deriving the effeots on the sound field due to a uniform con-
vection of the source. It is a characteristic feature of the above described Lorentz trans-
formation approach that the results for the radiated pressure at a fixed point in (xi/t)-
space are given directly in terms of the moving source position as measured at the time
the far field signal is received. As a consequence of this, part of what was identified as
convective amplification or attenuation by comparing Equations (2.34) and (2.35) directly
can under certain circumstances be simply due to the source/observer distance varying in
time rather than to any effect of relative motion.

The alternative retarded-time formulation, which was used almost exclusively in recent
aeroacoustic theories (see, e.g., Refs. [3], [4]), accounts, explicitly, for the fact that
the sound received at t was emitted as sound at the retarded time

tr = t - R/a (2.45)

where now R denotes the wave propagation path the sound has travelled fro" the source to
*the observer at a phase speed a. The latter approach appears to be advantageous when, in

particular, the sound propagates in a medium otherwise at rest with then a = a.

2.4.1 Moving-source problem

We now reduce our general analysis of Chap. 2.2 to the more specific case where there
is no mean flow present and the source moves at a constant Mach number M. in the positive
x1 -direction (see sketch (1) on Table 2), i.e.

M /ao = 0 ; Mc ( - )1)a, - u/a, - s . (2.46)

Eq. (2.34) may then be rewritten as
x, - at ioP*...// MZ

p = 1 + MS  4--RT ]  s, z exp iw,(t-R/a )  (2.47)

with Rt  (X1 - ut)
1 

+ (1-M)[(X, - ,)
2 
+ (X- )] (2.48)

and, according to Eqs. (2.45), (2.21), (2.22), and (2.19),

R a,(t _t 1-Hi -(M Gxt) + R} (2.49)

Introduction of the time-dependent angle of emission relative to the direction of mo-
tion. 0, .A --2. -' xi - utr R cos 0 (2.50) .,

enables us to replace x, - at in Eq. (2.49) by

Z+ *Qb -

A* ' r_ _ _ _ _ - -, h . .. . + . -

% T " . -- + . -++ ++ + ++ = . . . + . +:* + " '+ + - _++ + +++'+ ' ++
AI. ,• -V .x..+.+-. ;

A+t.. .: . . . . . + . . . + , + . .+ : . . + . . . . , + .+ .. + + ,.++ . . .++,+ , +- ,

" ++" -+ ++ + +] • .- + + * +L + . +L e ', , +=+/-+d. '- . Z ,r, 
+, 

+, . . .. -- + , +.. . . - + +- .. + . . .. ++, ,-- '+: + + +. '..+ + + + . + <+ + -,mW , +
,*s. :..;.,,; +:.+ ++ - . + ,..+ :.r ;, : ; m h +-+ : ... +++, . . .g,', +
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pi (Y'-o4r. ( pixj)!!

A- A -IIb)A

A z_ .t

(b)A.t w.o

A. IfQd0 a. A0 X. A.w

We a* 0 a

Table 2: Modifications in amplitude, freqjxency, phase velocity, and wave length due to a
uniform motion.

ths iedig ,- -t = ,- Et - G(t - tr) = Cos e - MSH = i(cos e - HS) (25)

IR R(1 - Ms cos 0) (2-52)

and hence for the pressure field in terms of the source coordinates at the respective time
of emission,

p ip@gexp it%(t- R/a.) .(2.53)

51 '1 .42)212 R(1-M.cosG)

p is now in a form similar to that in standard textbooks (see, e.g., Forse & Ingard
C5] Eq (11.2.15) or Goldstein [3], Eq. (1.110)). It shows the occurrence of a multipli-
ative qfactor in the amplitude function which describes convective amplification as aIfunction of 0 *iith -

-J(1-msr) 0 =00

czi(I - M5 s O 1)2 for 0 = 900 . (2-513)

(1+M5)~
2  = 1800

The Doppler frequency shift, too, mray be expressed in terms of the angle of emission,
0, if we define w as the time derivative of th.e phase function~ in Eq. (2.417),

W d Cu (t -Va.)] wc 1 dftldt) M,+M XI-Ut
U- a. ej

C is thus seen to also determine the frequency ratio

S= C = (1 -M~s O :43 1) I~ for 0e 90 0  (2.55)

(1.M 5)0 a1800

in full agreement with the formulae for 0 = 000 in box (1a) and for 0 a1800 in box
(ib) of Table 2. For sound radiation at e = 90o , i.e. normal to the direction or motion,
the frequency remains that or the original source fluctuations. Note, however, that the
source will have passed the observer by an amount Ut- te) until that sound can be re- -~-. cived. C is plotted as a fun'otion or 0 in Fig. 5.

While the Doppler frequency shifts at points in or opposite to the direction of motion
are independent of the model employed, the apparent upstream ampltsfication and downstream

.44
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attenuatict depend on the reference-souce, whei-r
ther it is thought of as being Olacid~at,(i) the

I I ~real-time position Uit or (ii) the retirdid-time
tr- M. position Utr. The corresponding upstreati/down- 1%I

.stream pressure amplitude ratios therefore differ
-.-1, 02 for the two models,

~* \ 6 MI symmetric real-time positions (Table 2)

09 I+9 S (2.56)

~ 8' 0' 10' 150, 180'
(ii) symmetric reatarded-time positions (Eq.(2.54))

F&5,Convection factor C due to a POO 11+M.11
-u--ommotion (M of a simple source c )

according to Eq. 2.55). 10

BotV. were plotted in Fig. 6 on a logarithmic
decibel scale as sound pressure level (SPL) difference'

A~L z20 log 6p0o6 180 0) . (2-581

In any case, the motion of the source relative to the
dS ambient medium is seen to have a tremendous effect on

both the frequency and intensity of Its sound field as
50 received by a stationary ob3erver, even at relatively

small Mach numbers. Per higher order acoustic sources one

40 can, under nertain circumstances, i.magine an energj con-ceta~nin front of the source which even exceeds that
AL illustrated in Pig. 6. The .so-called oonveotive amplifi-

cation factor is sometimes written in the foia
rig! ,/ ~ 2 n+.. 1-N ose -2n2 1, monopole

2n2 n- - 1= , dipole (2.59)
20~ nn , quadrupole

to with n vary!nZ with the specific structure of the source
(compare, e.g., Mor , v A4, Eq. (7)).

0o 0? 04 06 08 t What all convection effects, in this notation, have in

MS common is the invariance with Ms of the sound field atnormal incidence, e = 900 . This is illustrated in
Fig, 7 where

Pig. 6: Upstream/downstream SPL
-ifference for a moving source AL L1 90 0 =:20 log(1-M. oo 0)2 -= 40 log C (2.60)

according to Eqs. (2.56)-(2.50).
was plotted as a function of 0 with Na as a parameter.

Although that alternative nokati,.n may. be less coi,:enient in cases, we may finally write
the Doppler frequency shift and amplification ractors 'n terms of the ins tantaneous source-

observer angle 0 according to Eqs. (2.39) and (2.40),

p0  5

1+M(3 / I-2sn); (2.62)

2.4.2 Moving observer roblem
adThe sec-rd, more trivial case where the receiver moves relative to a stationary source
ada fluid at rest is physically indistinguishable from that of a source co-moving with

the fluid at the same velocity U 6 relative to the (then fixed) observez (see sketch
(2) on Table 2),

N =_ V/a0  M, ; M, s a )/ao = 0 (2.63)

9 Cn these simplifying assu"iptions Eq. i2.38) assumes the following form

-t r ?XPo~ :'::(t r/a ) (2.64)

with +________X________2'___

'The new Doppler shifted frequency received by the moving observer may, according to
Eq. (2.39), be expressed by

IN! -1 z -- Z-

- A 2- f-
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S(i + Mo cos 0) (2.65)

where, of course, 0 is defined by Eq._(2.37) as
the ,nstantansoussource/observer angle. The
cortresponding plots in Fig. 8 show an essential

-- .02 difference when'compared to w/wo in case (1)
30 , 0 (Fig. 5). This difference becomes negligible04only' for vanishing Mich-numbers Ms 

= 
Mo << I•

06 This kind of a relative motion has, naturally,
no effect on the structure of the source or its

09 radiation field as wi have tacitly assumed an20 idealized (i.e. immaterial) sound receiver
throughout in our analysis.

2.4.3 Co-moving source and observer problem

ThisJ .s another special nase incorporated in
our more general analysis of Chap. 2.2 When stu--IL .dying the noise of a propulsion system, e.g., a
propeller or jet engine on an aircraft, it is0 often very convenient and has, in fact, become

12 00 0 1 common practice to perform the bulk of the mea-
0[ -surements with the whole vehicle or the propul-30 T sion system alone on a static test facility. We

are then faceC with the problem of how these-,
--------- static test data might be converted into those

to be expected when the vehicle is in motion.

-10 - The inverse problem would be to relate the
aircraft noise measured in a fly-over test or
the noise of a high speed train while passing
by to the corresponding data known from static

Fig7: Effect of a uniform motion (Ms ) tests. The principle effects due to this kind
on the directivity pattern of a simple of relative motion can be investigated by assu-
source according to Eqs. (2.53), (2.54), ming a simple, acoustically compact source to
and (2.60). begin with. Although such a procedure would, in

practice, create insurmountable experimental
2 difficulties, we now let the idealized receiver

move with this simplified source or (what is
physically the same) superimpose a uniform mean

I /flow B on a stationary source/observer constel-
-.2lation (see sketch (3) on Table 2). With

0 wm h Ms - la0  Mf Mc (2.66)
S 0 - we may then rewrite Eqs. (2.39) and (2.40) to

-- 06 obtain--- 08

- 09 1 - (Mf cos */!-MfI.Siw) (2.67)
00 30' 60' 900 120' 150' 180 P I-MI 1 -M2 sin2 '"

0- f~ f

Fig. 8: Doppler frequency shift w/wa as I 1
regitered by a uniformly moving (M.) WO
observer according to Eq. (2.65). The new convection factor, Eq. (2.67), may

tell us the principal difference in the direc-
tivity pattern of the source as compared to its static directivity. For our idealized
sound receiver, however, we would expect exactly the same difference to .occur when static
noise data are compared with directivity patterns measured in fly-over or pass-by tests.
Only the frequencies would be Doppler shifted according to case 2.4.2 and the instan-
taneous source-observer angle 0 will have to vary during the fly-over test. The amplifica-
tion and attenuatinn due to the flight effects, however, can best be described by the 1o-| garithm of Eq. (2.67),

AL, = L - L(Mf= 0) = 20 log - .
(2.68)

* po

The corresponding directivity patterns depicted in Fig. 9 show several very remarkable
features some of which may be worth to be taken into account in standard fly-over or pass-
by noise testing procedures:

-j - The amplification in the upstream direction ic equal (in absolute values) to the atte-
nv:ation in the downstream direction, " ' -

2 ,(0 oo) 2 - (0o: 1800)

S- The direction normal to the flow (# 900) shows a negligible flow effect for vanishing
Mf << I only. Considerable amplification is found at 900 for moderate Mf.

~4_!



A

- - While the maximum attenuation. 66curlaias,
at QO, the
nuously shifted from ~:1800< of6 j, ,<&i T
towards 0 = 900 with Mf ap oahiig uritk. 1'6

-/ - All directivity, correction curves ifli. 9
0 - seem to cross in a fairly narrow range -ofuang-

les around 0 = 600. This angle, at whichthe
flow effect ,is practically alsenit, whatever

AL the value of M, represents itself aa~thatI
S/angle where the intensity of the stationary.

-- source can be measured during flight. = 600
may thus take the role of 90 in the mo---- =' k" 900 w20 1500 ring source problem (compare Fig. 7).

3. JET NOISE RADIATED UNDER STATIC AND UNDER

FLIGHT CONDITIONS

0. When looking for examples to illustrate the
a 6 various Doppler frequency Ghifts and convective
08 amplification effects of sources in motion rela-

- 09 tive to the fluid and/or the observer one soon
realizes that the corresponding experiments are
scarce. One important area of application of the

.201 foregoing theoretical considerations ic to the
aerodynamic near fields of turbulent wave packets

. Effect of a uniform flow ( on travelling downstream in free shear layers. These
th-e. d rectivity pattern of a (mf) will be the subject of the ensuig Chaps. 4 andthe iretivty attrn f asimple
source according to Eq. (2.68). 5.

Here we will try to illustrate the effects of
relative motion of aeroacoustic sources on their far field radiation characteristics. For
lack of a better example, we may first consider the effect of the downstream convection
(or propagation) of the jet flow inhomogeneities generating jet noise. Secolidly, the ef-
fect of forward motion of the aircraft is illustrated by assuming that the jet flow radia-
tes as one coherent simple source.

3.1 Jet noise source convection effect

Sound generation by an extended turbulent flow like a simple, circular, subsonic jet
is an extremely complicated process. The radiated far field as characterized by the

- acoustic intensity level
- power spectrum density
- polar directivity pattern
- azimuthal field structure

can, at least in principle, be related to a bunch of different source characteristics as
there are

- intensity distribution (strength)
- statistical behaviour (coherence)
- spatial scales (compactness)
- azimuthal structure (modes)
- downstream propagation (convection).

A complete theory relating the acoustic to the aerodynamic field quantities requires
an integration process in which aerodynamic source oancetZation and acoustic wave inter-
ference mechanisms must be accounted for. As an alternative to such a quantitative jet
noise theory, one may study the effects on the far field of the various near field charac-
teristics separately. Here we want to concentrate on the very specific effect source con-
vection has on the acoustic directivity. We assumethat all the other source parameters
remain entirely unaltered and ask ourselves, what is the effect of the convection Mach num-
ber M. as typical of the downstream propagation of those jet disturbances that are respon-

sible for the radiated noise (compare Fig. 10).

From publisned data we take
Ms = 0.65 Mj (3.1)

and assume, for a while, that the axial extent of the
total source region, Ls, be small compared to the far
field distance r,

L, <<r and R r (geometric far field). (3.2)

This means, effectively, that the fixed observer in
the far field should see all the downstream travel-

N\ ling source elements under the same angle 0 to the
R,- r jet axis. The finiteness (as distinct from the above

S mentioned compactness) of the source region has an
important consequence with respect to the source con-
vection effect derived under Sec. 2.4.1: for sound
waves to arrive at an arbitrary constant angle 0 it ,e _, I

Fig. 10: Sektch illustrating source is necessary that they were emitted at approximately ,
convect on effect, the same angle 8 = to the jet axis at the 'Y
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appropriate retarded:time tr =t - (R/ai). Hence the emitting source element has longdisapeared-bef6reihisi':sound has reached the observer. This particular situation suggests
Pfr the~emissi6i-,a6,i'eas the only appropriate 'variable when plotting polar directivity pat-

ternisA '6r jit- noise *as meaured-on a static test facility.

Next-we assume.,the jet to have-a "basic" directivity that is uniform like that of a
iimpliF monopole and the'whole,6f'the~directi6nality observed in the far field being a re-
suilt of the sourie convectioh only. This admittedly is an oversimplified model of the real
situation. Yet, knowing-that a higherorder source can be composed by a series of simple

sourcess we may tentatively ,use the directivities from Fig. 7 for a comparison with measu-red jet noise data. Since at 0 900 this specific type of" convectioneffect is absent,
we have used the sound pressure level measurednormal to the jet as the reference point and plot-

110 ted in Fig. 11 the conjectural di1ectivity pat-
terns along with those experimentally determined
by Lush (6j. The field shapes are seen to agree
very well at low Mach numbers. At higher values
of Mi, however, the assumed source convection
effect overestimates the amplification in the100 quadrant 00 < 0 < 900

L" Several exjCanations can be given for this de-viation considering all the other aerodynamic and
acoustic parameters that might change with vary-
ing jet Mach number. The least probable one, how-

' Mi ever, seems to be that, instead of a simple source
.0897 model, one should proceed to a higher-order typeof a source. A quadrupole model, for instance,

would be even worse as it would predict a still
higher power of the convection factor in Eq.
(2.59). Goldstein (3] in his Figs. 2.14 and 2.15compared directivity patterns predicted by,
(1 - Ms cos 0)- with the sound intensity measu-
rements of Lush [6] and other investigators. But

0500 lateron (in his Figs. 6.3 and 6.4) he found a
(I - Ms cos 0)-$- dependence with Ms =2 0.62 Mj

7) to fit the experimental data much better. Jones
" 0 fo7], too, considered different convection factors

0 oin an attempt to overcome this discrepancy be-
0 tween measurements and theories based on the spe-

cific quadrupole model introduced by LighthillG0 372 []

600 300 60 90' 120 150' 180" Assuming a correspondingly smaller value for
Msl/M as was occasionally recommended in the li-Fig. 1i: Polar directivity patterns of terature does not seem a valid approach either.

jetnoise after Ref. [6] and of a con- Here suffice it to state that, due to source con-
vected simple source according to Eq. vection, sound radiated at acute angles e to the(2.60). jet axis is amplified whereas that radiated at

obtuse angles e is attenuated. The measured dis-
tortion in field shapes is almost the same as that of a simple monopole convected in the
downstream direction.

3.2 Jet noise forward speed effect

Fig. 12 illustrates two physically equivalent configurations for studying the effect offorward speed of a vehicle on the far field of the sources moving with it. The superposi-
tion of a uniform flow with
Mach number Mf on the assu-

" (a) (b) medly unaltered stationary
- source (configuration (a))

corresponds to the co-moving
-- "source and observer problem

of Sec. 2.4.3. It is not easi-- - -G -ly accomplished experimentally
Mi since it requires, among other

things, extremely large wind
\1 tunnels and in-flow sound mea-surements [9]. The fact that,

in practical situations, theobserver moves with the flowwould make no difference forsituations the directivity as a functionof O, which, in this case, is

Fig. 12: Sketch illustrating forward speed effect, undoubtedly the most appro- . -
priate angle to be chosen whe- ,. -- --ther the observer is co-moving ;.':. *.. ':>'' 7 :"

with the source or the fluid. The frequency spectra would differ for the two cases but notthe intensities as was earlier described in Sec. 2.4.2 (moving observer problem).

The effect of flight on jet noise, e.g., can thus be studied, in a qualitative manner, -by adding intensity levels AL2 according to Eq. (2.68) to the directivities measured under .

0 1, ________________. - , ,..
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static -conditions. This flight correction of the field shapes can be: done .iiithesame way,
ror~polar or Unear plots. The latter has become commo IPractice instatic.t6 fight corn
parisons (10, 11I 2J. ... -"3

Such a directivity plot of the static data along a line parallel to the xiii scii-cor
rsponding to a flight altitude of ro was reproduced in Fig. 13. The raw staticidaat were

- -- -obtained by. Brooks [1iO).'witti i, Rolls Royce Vi-
per 1i Jet engine over a-'oncite surface along
a-~line parallel to and only 30',m to 'the side of

0 the engine centre-line. For the flight tests the
same engine was installed on a Jet Provost air-

dB craft and the microphone mounted on a tower of
a bridge. The actual fly-over tests were then

, .done at ro 150 m with the engine operating
____ \conditions maintained constant so far as possi-

ble in order to simulate the same noise source
conditions as in the atatic tests. We have mo-
dified Brookr's static field shapes in three
steps and replotted them in Fig. 13t

7 -1--- (1) Due to the forward speed (Mf = 0.373 in
our example) we expect a correspondingly
reduced source convection Mach number

0 300 60' 90' 120' 150' 10' Ms = O.65(Mj- Mf) (3.3)

Fg1: Qualitative static-to-flight to become effective. This modifies the
ocon of jet noise linear field field shape according to Eq. (2.54) and

shapes. Fig. 7 relative to its value at 0 = 9
0
0.

:1.07; Mf = 0.373, . = 150 m. The correspondingly corrected directivity
Static test (bare Viper 11 engi- pattern has its new maximum at 600 to the
ne, Aston Down) (10] jet axia.

--- Due to modified source convection
factor (Eqs. (2.54), (3.3)) (ii) In a very crude first approximation, we

-.- Due to forward speed effect (Eq. may take this modified static field shape
(2.67)) as a new datum that accounts for the va-

-- Flight test (Jet Provost air- tied aerodynamic conditions only. If the
craft, Severn Bridge) (10] forward speed had no additional effects

on the development of the mean flow ai'd
the turbulence structure of the jet, we

could now try to correct the directivity according to Eq. (2.67) or Fig. 9. The ma-
ximum of the new directivity can be seen in Fig. 13 to have been shifted towards 800
with an almost symmet'ric decay at both sides of this peak. Such field shapes are very
typical for jet noise in flight.

(iii) Although this is not clearly stated in Brooks's paper, we take it from a private
communication with Prof. J.E. Ffowcs Williams that all the flight data of Ref. [101

have been plotted as a function of the
angle 0 at the time of emission of the
sound. This, however, is simply related

to the instantaneous observation angle 0

sinO: sin0 (l-M.sin2'+ Mfcos 0 (3.4)

which is independent of the side-line dis-
1200 // tance r0 (compare sketch (b) of Fig. 12).

/ With the aid of Eq. (3.4) or Fig. 14 we
may replot Brooks's flight data and com-

go,-_ pare it with the modified static directi-
vity characteristic in Fig. 13.

Despite of the very rough assumptions made
60 --.- M,'.0 the two directivities are amazingly similar in

02 shape except for small angles to the jet axis.

0373 The philosophy behind our simple model is that
- 09 we think that the jet flow as a whole should be

considered as one more or less coherently radia-
ting sound source ap opposed to a model that
assumes a large number of statistically uncorre-
lated and hence independently radiating turbu-

00 300 600 900 120' 1500 180. lent eddies. In both models source convection is
likely to have an important effect on the far

Fig . 1: Emission angle 0 and observa- field directivity. The simple source model seems
tion angle 0 interdependence according to yield the correct trends for source convec-
to Eq. (3.4) tion and flight effects whereas the well known

:; .quadrupole model was apparently less successful.
- . At least one might get this impression from most recently published papers on jet noise in :, .,

flight. The corresponding correction formula in the quadrupole model as originally derived
by Ffowcs Williams [13),.

" "" . , ". ' 2 I I/2 I 5/2(3-5) :;?"

_ _(e0) - cos e) 1 (-M coo, )")577
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_____________seems to have been tried with little success.

--', -

M, 5-Ij7 ] comparison in Fig. 15. For moderate values of f,

as in the example treated above, it can only ac-
AL- count for a modification by less thani dBof the

0 -0 directivity between 0 = 600 and 1200. The dif-0 • 90 1200 1500 1 ferences between the correction curves in Figs.

15 and 9 are even more pronounced for higher

flight Mach numbers. F4. (2.67) results in a
.strong amplification of the noise radiated in

09 the forward quadrant (particularly at angles
10 - close to 9001) and similarly strong attenuation

in the rearward arc. Both effects were observed

.1: Flight factorin a variety of static-to-flight comparisons butac Fgt fac](,+Mfcos cannot be explained by the conventional correc--a-cc-o-d-Eg t Ref [21'.tion factors.

So far we have considered the effect of source convection and forward speed on the
field shapes only. No attempt was made to also estimate the effect of flight on the abso-
lute _ at a given point in the far field. This would require a more elaborate in-
spection.of the source integral. Michalke and Michel [14], however, have only recently de-
rived a new jet noise flight correction factor. This enables more than just a qualitative
static-to-flight comparison; it also predicts the intensity variations with an unpreceden-
ted accuracy.

4. AERODYNAMIC PRESSURE MEASUREMENTS IN TURBULENT FLOW

4.1 The near field induced by convected flow inhomogeneities

Chapter 2 of these lecture notes dealt with linear perturbations of a fluid flow in the
most general sense. The basic equations are equally valid for small aerodynamic fluctua-
tions about a steady state as induced, for instance, by a moving source or sink. The la-

minar flow over a wavy boundary, the flow field induced by an isolated vortex or by a more
or less regular vortex street shed from an obstacle in the flow would be some typical
examples of unsteady aerodynamic flow fields of practical interest. In the limit of very
slow variations in time (w + 0) or the medium being considered ac quasi-inoompreseibZe
(a. - -) we may concentrate on what was termed near field in the preceding sections.

In the radiated far field (Sections 2.3 and 2.4) we have, for obvious reasons, dealt
with the acoustic pressure exclusively. The acoustic particle velocity vr in the direction
of propagation is always simply related to the local acoustic pressure by

p(xi,t) = poaovr(xi,t) (4.1)

(compare Eqs. (2.24), (2.25) and (2:31) for x2 x and x, x,). In the aerodynamic
near field, however, the interrelationship between unsteady pressure and velocity fields
is far less obvious.

In countless studies of low subsonic (M = /a0 << 1), unsteady flow fields it has been
assumed as a characteristic property of the aerodynamic pressure fluctuation that it is
proportional to the square of the local velocity fluctuation in contrast to a sound field,
in which the acoustic pressure is proportional to the first power of the velocity fluctua-
tion (refer, e.g., to Ref. [5], Chap. 11.1, p. 703, and Chap. 11.4, p. 764). A relation-
ship like

a o, , (4.2)
where the twiddles denote statistical averages (r.m.s. values) and a takes on values be-
tween 0.58 and unity, may be valid in the very special case of homogeneous, isotropic tur-
bulence [15]. As an estimate of the pressure fluctuation in a real flow, however, Eq. (4.2)
would require that the turbulent velocity perturbations be convected with the assumedly

uniform flow, i.e. Taylor's hypothesis 3/3t -Wa/x be strictly satisfied.

It is much more realistic, however, to assume that in real flows we have all kinds of
inhomogeneities travelling at convection speeds a which are somehow coupled to but need
not be identical with the value of the mean flow speed, 6 9 a. This is especially true
when there is violent vortical motion in a region of high shear rates (as, e.g., in the
mixing region of a jet, Fig. 16) which can induce disturbances in (i) the adjacent higher-
velocity potential core region or (ii) the lower-velocity entrainment region. This is a
situation very similar to that depicted in Fig. 2 of a source Q moving relative to both
the flow and the observer.

In the near field of the source we may, according to Eq. (2.32) of Sec. 2.2, expect a
Zinear relationship between the local streamwise velocity and pressure perturbations,

P(xi,t. - Po(F-u5)v(xi,t) • (4.3)

A similar relation would hold if, instead of a simple source, we had one of higher order
of complexity and, instead of just a single point source, we had a series of sources, all
travelling at the same constant speed 5 9 E in the direction x, of the mean flow c. The , .

--' ressure and velocity fields of convected vortices were discussed in some detail in Refs.
1.6] and [17).

.,
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A[

In. the special- Case 6f afomnpttir
tof turbulence' cnvctid.pa li.. ...e.. ....r

entr~inffieht it would'be,possible odsrba
region mixing region Fourier component b.

0 o n c O 
-reX e N v,(xI, t) = A exp ifl(t -x 1 u, (4- x)

3- 4 5 i.e. a coherent wave-like perturbation.6f the
-f flW.. flow afid obtain Eq. (4.3) f;om integrating

the linearized equation of motion ,directly
(18].

Experiments inside turbulent flows have

Fig. 16: Circular jet flow configuration, until recently favoured the measurement of
the mean and fluctuating velocity fields with

sldhighly sophisticated hot wire and Laser ane-
mometers. Fluctuating pressure measurements were mostly restricted to the pressure field
at solid flow boundaries where it is measurable with flush-mounted microphones [19).

Pressure probes for measuring the pressure fluctuations within the turbulent flow, on
the other hand, have long been suspected of inevitably creating and subsequently receiving 4
additional spurious pressure disturbances due to probe-flow interactions. Considerable
efforts have been expended over the past ten years to show that acceptable pressure data
may L. obtained in a variety of flow configurations, t

(a) C.-cular model jets [iE, 20]
(b) Co 'nnular model jets (21)
(c) Two- tream plane shear layers (22)
(d) Two-a iensional wake behind cylinders (23-25)
(e) Axisy.. tric wake behind disks [26]
(f) Turbulet. duct flows [27]

4.2 Possible sour. "s of error in aerodynamic pressure measurements

Most of the above nentioned pressure measurements employed suitably shaped condenser
microphone probes. A I mber of probe/flow interferences are conceivable which may render
applications of this te 'nique difficult:

(1) Acoustic contaminat'on of the flow
(2) Resolution err.:2 due to finite transducer dimensions
(3) Flow-affected sensitiN'ty of the microphone
(4) Acceleration response a e to probe vibrations
(5) Probe-flow interaction n-.Ase
(6) Fluctuating cross flow err r
(7) Response to axial velocity .luctuations

Some of these error mechanisms were d cribed in some detail in Refs. [18], [28-30].

The cross-flow error, e.g., is due to he lateral velocity fluctuations vn normal to
the probe surface causing an unsteady sta6 ation pressure of the order

: 0vn • (4.5)

Although the magnitude of the error coefficient, 10, should, according to Ref. [281,
,ever exceed a value of 0.5, Eq. (4.5) confirms ' rlier suspicions that it is principally
i oossible to accurately measure pressures of the irder pov '. A probe that necessarily
s 'os the flow at the measuring point would surely e inadequate for measuring the pres-
sur, in an isotropic turbulence field if this were g, ,erned by Eq. (4.2).

Whti, dealing with highly unisotropic jet and wake fL s, however, a more realistic esti-
mate oi the r.m.s. flow pressure can make use of the relt. ion (4.3) yielding

YP0 v . (4.6)

The new coel.tcient

Y = 11' uDa l = IMc/M (4.7)

can be estimated i lie between 0.2 and 0.5 corresponding to local o.'nection speeds of
the disturbances iL the range

u- :0.5 - 0.8 ; Y = 0.2 - 0.5 (4.8)

depending on the specif.• flow under investigation. As a result of this rel, 'ive motion
between the flow and the erodynamic inhomogeneities disturbing it we would I. t be sur-

Z,," prised at all if the press. "e coefficient

would exceed the critical value arognd unity by orders of magnitude depending on the local :
value of the flow t/rbutenoe leveZ v/a which can be very small indeed!
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eIn 3ordert nso teurthevalidity-of' aJneasuring technique employing ,microphone 1ziobes
thinieted'i , flow i "itherefore' esisehtial to consider, first of allV, the 16cally

which b afreir rimrilpjit'f'ed, cbi g fi.. .ti6 in.

I4 3. Survey of rssuz:cbeffici'ertsmeasiored.in.varius shea.. flows

,6r -low Machnumbe' flows the.aerodynamic pire-sure doe'ficiert bfE. (1.9) is iiwa'ys
(er tsmall compared to the" corresp6nding ratio in ah ac6ustid wave field acc6odibi',f6*Eq,

Yet, it.will be seen to exceed, by a considerable amount, the values of Sec. 4.1 for iso-
tropic turbulence,

p- 2a = 1.2 - 2.

V1

~The following collection of pressure and velocity data will commence with the results

obtained in unbounded free shear layers. It is'in this area where pressure measuremehts
are most urgently needed in connection with certain aero-acoustic and turbulent-energy-
transport phenomena, but where equally often pressure measuring devices have been suspec-ted of being unreliable. The pressure intensity results will be reproduced as reported by
several independent research groups employing highly dissimilar pressure probe geometries
and spnsing devices.

In each individual case where the r.m.s. pressure 5 has been measured along with the
local mean (U) and fluctuating (v) velocities, the dimensionless pressure coefficient
/(1/2 po2) will be evaluated. Po is the mean dens.{ty of the medium, whi'ch in all cases

will be air at velocities, U varying between 10i and 200 m/s. This pressure coefficient,
which may be looked at as the ratio of potential to kinetic aerodynamic energy density,will always be plotted against the local (longitudinal) turbulence level v/U. This way of
presentation of the results will enable an easy comparison of the situation in free mixing
layers with that in a variety of flow configurations with solid boundaries.

4.3.1 Circular model jets

The first set of data was obtained with a condenser microphone and hot wire placed in
the potential core region of a jet issuing from a vortex-filament nozzle with a contrac-
tion ratio of 200 cm/l cm r181. The results are shown in Fig. 17. The velocity was kept

very low during this earlier study, as
may be seen from Table 3, which supple-

10 " - ments the figure by co-ordinating the
1 L symbols with the respective jet parame-

ters. More recently, Armstrong [31] has* ~ extended the jet prssure measurements
towards higher exit velocties in another
jet facility which was also described in0, Ref. [18]. Only a few of his results are

* "reproduced in Fig. 17, but for Mach num-
1 ;2 bers not exceeding 0.6 - 0.7 Armstrongv found no dramatic changes in either the

" normalized intensity or structure of the

101 Circular jets " . /,turbulent pressure and velocity fields.
/Planchon [20] at the University of0 , "Illinois in his jet pressure measurements

Co-annular jets a employed a bleed-type pressure transducer,+details of which were given by Spencer
t-, and Jones [33]. Although the design and

100 * _______ _______ - operation of this transducer has little
in common with the probe microphones pre-
ferred by our group, the results for the
intensity and structure of the pressure

I , field look promisingly similar (compare
1-Fig. 17).

10.2 10" o Sami et al. [32) appear to not have
VU -been convinced themselves that they wereFig. 17: Aerodynamic pressure coefficient versus measuring the true r.m.s. turbulent pres-

local longitudinal turbulence level in circular sures with their piezo-electric ceramic
and co-annular jet flowc, probe, which again differs considerably

from the probes described above. Never-theless, their data fit quite well into the overall trends depicted in Fig. 17. The dashed
line gives an average of their pressure and velocity results from several radial traversesat varying distances x from the jet exit.

Siddon [28] designed and tested a special pressure probe which enabled him to correctthe detected pressure signal for the error due to the fluctuating cross-flow normal to the
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i!. Circular jets __....

Fuch i'] r,- 0 0.5 D 4 x, 5 D UO --om/is

'D = 14cm, 20
0 30

10- < ReD < 3i105 x D 0 4 r < 0.5 D 20
• 30

Armstrong [31] v r 0 0 x < 13 D U- 60m/s
D = 10 cm; ReD _410

s

Planchon [22] a r = 0 D 4 x 4 5 D UO  90 m/s
D = 6.35 cm 0 0.5 D D 4 x < 10 D

= 1:ID O<r<0.67D
Re0 1.10 x 3 D 0 • r 4 1.1 D

+ 10 D 0 ! r < 2.5 D

Sami et al. [52] --- i D 4 x < 10 D 0 4 r < 1.5 D UO = 10 m/s

D = 30 cm; ReD = 2"10_

Siddon [28] W. x 6 D 0 4 r < 0.8 D UO = 50 m/s

10 am; Re = 3.3"10
5

2. Co-annular jets

Hammersley [21]

DC = 7.6 cm; DBP 22 cm y X = I DC 0 4 r 4 2.2 DC UC 135 m/s
ReC = 7.8.105

,  
A 

10 
DC  O' r 4 3.2 DC  UBp= 54 m/s

14 cm 0) 3 DC 0 < r • 1.6 DC

Tabl 3, Parameters of circular jets with and without secondary flow (symbols corres-

por.j to data points in Fig. 17).

probe's surface. Siddon's result obtained at x = 6 D for a 10 cm circular jet are also

incorporated in Fig. 17 and Table 3.

4.3.2 Co-annular model jets

It is well known that a secondary flow passing by the primary flow as an annular jet,
considerably modifies all three: the mean flow properties, the distribution of turbulent
intensity and, hence, the noise generationIt is interesting to see whether the relative
magnitude of the pressure and velocity fluctuations would also be altered by the by-pass
flow.

Work done at Illinois University also provides valuable data in this respect. Hammersley
121] reports pressure and velocity data for the core (index C) and by-pass (BP) regions
with by-pass ratios DBP/DC of the order of 2 or 3, respectively. For a constant veloc.ty
ratio UBp/UC equal to 0.4 the corresponding pressure coefficients have been plotted against
v/U where U represents the local mean velocity as in the plain jet case.

The data of the plain and co-axial model jets are seen in Fig. 17 to follow the same
overall trend for /(1/2 pov

2
) to decrease as v/U increases from low to high turbulence

levels. The pressure coefficient reaches a minimum close to one where the local turbulence
reaches its maximum. This typically lies in the middle of the mixing layer of a single jet
or in the middle of the two layers in the case of co-axial jets.
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4.3.3 Tw6-strei mplane- iheir ,layer

avAfiernhig-discusietd xisymietric ihear layers, we now turn to two-dimensional free
hear Jldyf . senceadJonis'(22]'ave investigated the mixing of two parallel, uniformatreams wIth Ua>Ub 'For. measuring conditions as laisted in Table'4, their pressureand velocity,-data are shown-in'Fig. 18. On the-high- velocity side of the'shear layer

(n > 0) tfiresults -foallow 6he s~iie trend as in the core. region 6f a ciraular jet. reaching
pressurei,coeffidients' above !0: zAgain

10r... - the higher'values of P/(1/2 pi 2) "cor-I " ' Irespond to measuring positioris,-remote

from that region where the most intense
turbulent mixing takes place. For the
normalized lateral distance n = ,

\0x x  minimum of P/(1/2 poV') > 5 is reached10t\oo for vlU .between 0.15 and 0.20. Similarly,

as in the jet experiments, the pressure
__1 \_ Two-stream coefficient increases again on the low-

she11 velocity side (1I <O) of the shear layer
ayer reaching values of 50 and more. In con-

C X trast to the jet entrainment region, the
1.. latter correlate with lower turbulence

7 levels since a slowly decreasing C! is
divided by U approaching Ub instead of
U approaching zero in the et case.

From Fig.V.1,xsmmetric wake behind circular

Fra Fg 17 disk
1 0 .. . . Only most recently we have started

measuring the aerodynamic pressure field
in the wake of a circular disk in a large
free jet wind tunnel [26]. The normalized
intensity plots in Vig. 19 show quite anin et low asindctdbt s tragh

10.41 amazing similarity with the conditions00"  10"2 10", 1T in Jet flows as indicated by the straight

/U line (from Fig. 17). The wake results, so
SAerodynamic pressure coefficient far, look very promising in t'at theyFig.18:Aerdynmicpresurecoeficent seem to reveal a remarku'ly aifferent

versus local longitudinal turbulence level s re eal a n ea flo cfren
large scale unsteady flow structure whenin free shear layers. compared to that of turbulent jets. It
may suffice here to note that, again, the

r.m.s. pressure 0 is by far larger than that anticipated in Eq. (4.2) for isotropic turbu-
lence. The last statement is especially true for measuring positions remote from the axis
of symmetry (r 0 0) in the outer flow region.

5Two-dimensional
wakebehind cir-

Ub cular cylinders

Kobashi (23), in
what is one of the
earliest studies of
aerodynamic pressure

S-Ua fluctuations, measu-
red intensity profi-

Two-stream plane shear layer les at 42 D downstream
Spener Jons [2] x =10 m -. 06 n +006 U 30m/s of a circular cylin-
Specer& Jnes(22 " :1cm -0.6< <+.06 Ua 30 /s der. If, in his Fig.

Ub/Ua : 0.3 17.8 16, k is approximately
127 taken as D and the di-
7 mensions of this as

_____(smos kg/ms
2 z N/M2 (insteadTable 4: Parameters of two-dimensional free shear layers (symbols kg/m as written at

correspond to data points in FAg. 18). the ordinate), one may
again -evaluate

P/(1/2 pov2) as a function of v/U. The corresponding data points in Fig. 19 lie very close
to the results valid for axisymmetric jets and wakes.

This coincidence of the jet and wake situations is confirmed if one replots in our uni-
fied frm Strasberg's results which he obtained at x i 24 D where the turbulence level
is higher by a factor of two, at least. His result apparently remained constant for consi-
derably varying flow parameters (compare Table 4). These far-wake results 42 D and 24 D
downstream may be accomplished by a single measurement of Maekawa et al. [25] close to a
cylinder at x = 2.3 D . All three 2d-wake investigations employed different, partly home-
made, probe microphones with a ball-shaped nose and the pressure-sensing holes (or ring'- ; " ,slit) about 2.5 (or 5) probe diameters away from the tip.

- , 4.3.6 iully developed turbulent duct flows

The fully developed turbulent flow in long ducts may be uonsidered as intermediate be-
tween free and attached shear layers. Neise L27J, when determining the turbulent background
noise for sound measuremerits in hard-vialled, circular ventilating ducts, obtained pressure
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- rm Fig? 17- - -- -

Axisymmetric From Fig, 171

02wake 102

10, Response td ______ 1,

Duct flow

10 100Grid flow-'

Upper lmt0(,/ 1
Thor .0 f lutn 10ross

na issotric aun e t wimnona a' nvrou utfos

to~~~~t- Eqs. (1.) (.1, n 4.6.3

in Axisymametric ane bw-ehn sicul a ik invrosdutfos

2. Two-dimensiona wake behind circular ci nder inacos Xo

Fucashital (23) 0 x =13420 4 Dr 4 2.5 D ,: 4/

Stra~brg [21) ~ :2~4 0 0.5. 1 5 ,<2 m/s
2.5 < m D e 5* 104 cm r*0 = 0e 0.2 Dl6x.17

and veocditye ficl aet wehinic ar pctedinr i. 20 cosparlow th hejtdain

dicaed by3 th upe 4oli lin show tha th drc vaue for D1 U. lie just ?i>
litl beo th forer This may acodn1oEq.(08'n (.) eidiaieo h

speedser duct -3 x 4D r=05D .<2
conecio in tublec to exee the values <l R th iniia6reio0'Makw ta.[5 . .5DU ./
a jet. ,Re =13-0

Tal 5:Prmtr f-iymticado w-iesoa ak lw smoscrepn
4!--at pons nFg.1)

an vlciy offcins hihar dpctd nFi. 0 Cmprso wt te e dat i-
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1. Fully developed channel flow

Neise (19] = 0 r<05 D
D = 15.3 am; ReD 4.I05 0 x 5 D U,= 40 m/s

o *.-/00 _ _0

o --s

2. Grid generated turbulence X

i iddon Cio], meshes: 4.5 x3 m =O 2 m/.l
Table 6: Parameters of ducted flows (symbols correspond to data points in

4..7 Grid generated tublec +. torbThec

Siddon [28) also reported pressure :intensity profiles in a rectangular channel flow. The

results lie close to Neise's. In addition, Siddon measured aerodynamic pressure and velo-
city fluctuations in a wind tunnel far downstream of a coarse grid w.'ich was especially
built into the upstream end of the diffusor section to generate a homogeneous and appro-
ximately isotropic turbulence field in the test section, The combination of /(1/2pov 2 ) 2
and v/U = 0.1 lies close to the duct data measured near the walls.

4.4 Limitations on measuring techniques employing inserted microphone probes

In the preceding Sec. 4.3 we have plotted normalized pressure and velocity coefficients
for a variety of selected flows. For similar plots of data from bounded flows (e.g. wall
jets and boundary layers) refer to Ref. [341. Figs. 17-20 allow a rough estimate of the
fluctuating pressure intensity from what is usually termed "turbulence level", v/U, and
from the respective mean flow velocity U at the measuring position.

The normalized pressure coefficient /(1/2po ) as measured with inserted microphone
probes may tentatively be compared with the results in Eqs. (4.6) through (4.9) from our
simple linearized analysis of convected flow inhomogeneities. The conjectural coefficient
y comes very close to what one might expect as corresponding convection speeds Uc/U- Il-yI
in these flows (compare Table 7). The duct flow estimate, 0.82 < Uc/U < 0,9 , agrees very
well indeed with measured convection speeds in such turbulent flows. The relatively high

pressure coefficients yielding the ex-
tremely low Uc/U values in Table 7 cor-

"Jet Flows 0.1 < Y < 0.9 0.1 < Uc/U < 0.9 respond (i) to the fluctuations in theI .. so-called potential core close to the
Wake Flows 0.16 < y < 1.0 0 < Uc/U < 0.84 jet exit and (ii) to the outer flow

I regions far remote from the wake
Duct Flows 0.1 < y < 0.18 0.82< Uc/U < 0.9 (r = 2.5 D). Inside the actual wake and
II I.... jet mixing regions the conjectural
Table 7: Conjectured convection speeds when values for Uc/U vary between 0.6 and
results of Figs. 17, 19, and 20 are interpreted 0.8 in excellent agreement with convec-
as due to convected flow inhomogeneities. tion speeds measured there.

It is noted, however, that this oversimplified model can only be regarded as a first,
qualitative approach aimed at a better understanding of aerodynamic pressure fields in
turbulent flow. It may help explain why pressure intensity levels exceed those expected
for isotropic turbulence by orders of magnitude in more realistic flow situations. Before
more comprehensive studies of the aerodynamic pressure fields can be undertaken, one would
like to know the possible limitations imposed on the probe microphones measuring technique
by the error mechanisms discussed under Sec. 4.2:

4.4.1 Acoustic contamination of the flow

The effects of an externally applied sound field on t%? flow are twofold. The first is .
quite obvious; when acoustic pressure disturbances a'e superimposed, with the flow acting

9 <:x ,-,- as its carrier in a strictly passive manner, the sound pressure level L ought to lie suf- ". ' - :
ficiently far (say, 10 dB) below the equivalent aerodynamic flow pressure level Lp, (11.12)
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'where 2. -210" N/m2  is the same reference pressure as for the sound priessure-vei.
Otherwise L would contribute tb Lp or even mask the pressure fluctuati6ns to.6ee'ed.ig-'--

Fig. 21 may be used for a first eitimate of what pressure levels L are to-be.exp~cted
as a function of characteristic flow velocity Us', in jet; wake ahd 'dugt'flbi Kilhljc6n-
sidered here. With the equivalent flow pressure levels as high as 97 to 117 dB at a flow.
velocity as low as 15m/s, in the present experiments this kind of an acoustic contamina-
tion could savely be excluded. Sound pressure levels of the order indicated by Fig. 21
are extremely unlikely even in relatively noisy flow facilities occasionally used inpractice.

A second effect of a~oustic contami-
170 nation is far less obvious; the flow,

apart from carrying the sound waves, may
d8 actively respond to acoustic disturban-

__ _ ces however small these may be. This is
ISO undoubtedly the case whenever the flow

goes through a transition from a laminar
/ to a turbulent state like in a jet at
i 'lower Reynolds numbers. Use has, in fact,

13 - - -y.' been made of this in especially devised
'k/ k experiments; a sound field of a certain

__.__,____ ____ /"frequency may be used to trigger the
flow disturbances in the initial shear
layer near the jet nozzle lip. In these

'/, artificially excited aerodynamic pres-
k sure waves which then travel downstream

A-U. " in the steadily broadening jet shear
9 - layer, the randomness as typical of the

bko Upper hid fnaturally occurring fluctuations has
noise ,$ I wind noise been removed. Acoustically seeding or

fps < U.") forcing of a jet flow may even, in cer-
70 ', tain circumstances, facilitate investi-
1O 2 4 6 VO' m'S ,0? gations into the aerodynamic pressure

U. - field (35].
4.4.2 Resolution error due to finite

Anstrong et al. [42] O x : 2 D, r :0 transducer dimensions
:5cm Ox 3D, r : O.5D

L Ds [9]; 0 :5 cm & x : 2 D, r = 0 As is well known from wall pressure
Fuchs et al. [26) A x : 3 D, r : 0 measurements underneath turbulent boun-
Neise [27) x x = 40 D, r : 0 dary layers (19] it is of the ut-

+ r = 0.25 D most importance that the size of the
(increased turbulence level) O x : 5 D, r : 0.225 D pressure sensing transducer element be

sufficiently small to obtain optimum
Fi : Aerodynamic pressure fluctuation level resolution. This is warranted only when
in various turbulent flows. For comparison: the dimensions of the pressure sensing
wind noise level according to Eq. (4.13). area are small compared with the charac-

teristic scale of the pressure field.
Otherwise the pressure is measured too

low. In our own jet and wake experiments [18, 26], where
we have preferably used 1/8-inch Bruel & Kjaer condenser
microphones fitted with nose cones (Fig. 22), we came to
the conclusion that this type of resolution error was prac-
tically absent. This may not surprise after these flow
fields have been found to be dominated by large-scale co-
herent turbulence structures.

4.4.3 Flow-affected sensitivity of the microphone

Pressure sensitivity and frequency response of micro-
:Fluctuating pres- phones are usually calibrated for sound waves impinging at

sure measuring probes with an individual (or random) angle of incidence to the probe
built-in B&K condenser m- axis with the medium (usually air) otherwise at rest. Itcrophones fitted with nose is conceivable that these response characteristics are
cones (d f i in. and affected in the presence of flow. One knows, e.g., that
c/8 in.) the acoustic impedance of perforated walls is affected by

turbulent grazing flow (36]. Both amplitude and phase of

the measured acoustic or aerodynamic pressures could thus
be adulterated.

Neise [37] determined exactli how large the effect of flow is on the pressure sensiti-
vity of probe microphones of the kind used for in-flow pressure measurements. He showed
that there is a measurable los in sensitivity dut to the air flow. It does, however, not
exceed 0.5 d3 for low subsonic flow velocities in a frequency range between 40 and 1250 Hz.
Fig. 23 shows the results and a schematic of the test set-up in which a reference micro-
phone was mounted flush with the duct wall. Unfortunptely, these experiments could not . - .; "
be carried out for flow velocities beyond 40 m/s, a value which is typical of fan r.oise
measurements in ventilating ducts [38J. "-.-
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4.4.4 Acceleration response due, to.probe

_______________________vibrations

I -Z -- Another possible source of error may
,have its origin in the response of the

microphone built intb the pre.ssure probe
I_ -A Ito possible flov'-iiduced probe vibrations.

The unsteady flow around- the body can in
S - -- certain cases excite vibrations thus si-
.! , -w - mulating pressure fluctuat.ons in the

0 o microphone output. In our own experiments
we had no problem avoiding critical probe

Svibrations by mounting the microphones on
fairly rigid home-nade holders as seen on
Fig. 22. Small lateral oscillations of

_ __ }.. ,hthe probe tips which became visible at
higher flow velocities do not seem to

D have caused spurious pressure signals.

_____.__l_,__I_,_,____,__,____,_,___, II4.4.5 Probe-flow interaction effects

Even if the pressure probes were made
V W d, o a , wih ,". * ideally rigid and the on-coming flow per-

__. .---- -fectly laminar, one can still imagine a
variety of mechanisms by which pressureperturbations may be created. Two of

.1 these mechanisms depe..J on the geometry
63 125 250 5M Io00 and relative motion of the probe alone:

-- ~ Firstly, a wake is formed, behind the
probe, and secondly, a boundary layer
develops along the probe surface. Both
flow phenomena may, in principle, induce

u2o0/s pressure fluctuations on the probe itself
U if no other unsteadiness is present. Part

- .~- U.10w, of these self-induced disturbances may
t# also be registered as noise by the micro-

phone dependent on the position of the
Z;lcw~*i ] pressure sensor thus limiting the measu-

recent of the wanted aerodynamic or
acoustic pressure.

Fig. 23: Change of acoustic sensitivity of A number of attempts wore made to de-
microphone probes of the type shown in Fig.22, termine this kind of a "wind noise" dueafter [37]. to the flow around the probe. They em-

ployed rotating booms, ground vehicles
and aircraft to move the microphone probe through assumedly undisturbed air. None of these,
however, is reckoned to have yielded the absolute minimum wind noise level. We conclude
this from mLasurements in one of our high contraction ratio free jet facilities (Fig. 22).
A reasonably quiet, low turbulence (/U* < 0.005), parallel flow is generated in the jet
exit plane. If the above described 1/8,1/4,1/2, and I inch microphor.e probes are inserted
there, they measure pressure levels below those previously reported as wind noise at the
respective flow velocities provided the probes are carefully aligned with the flow and
fitted with the standard nose cones. Considerably higher noise 'levels are measured with
the nose cones replaced by the standard protection grids. For the -ime being, we may there-
fore take these pressure levels as the upper limit for the rind noise for as long as no
lower pressure levels are found in, possibly, even quieter flow situations.

The respective signal-to-noise ratio for aerodynamic prL.sitre ,easurements in jet, wake,
and duct flows may, on this basis, be seen in Fig. 21 to deterioratte with the flow veloci-
ty. This is because this type of wind noise increases wish a&,oro.ximately the third power
of UO,

U. 3u (4.13)
whereas the aerodynamic pressure, from all we know, scales on CU

for not too high flow Mach numbers M7. The reason for the wind noise level in Fig. 21 to
level off for Uo < 30 m/s is the acoustic background noise -. the test room contamina-
ting the pressure measurements in the jet exit plane at these very low velocities.

Another, very important probe-flow interaction effect becomes evident at very high sub-
sonic flow velocities. For UO > 220 m/s corresponding to MO > 0.6 the jet results for
r = 0 , x = 2 D in Fig. 21 show quite a dramatic deviation from the dependence indicated
by Eq. (4.14). This effect, which does not occur in the data obtained at r =0.5 D ,was
also found by Lau [391 in a completely different jet facility (compare the triangles in -

,,, ,- Fig. 21).
No really conclusive explanation of this probe-flow interaction effect can be given

here. But there is sufficient evidence that when ati obstacle like the probe microphone is ;
inserted in the high velocity jet core flow thie may generate both additional flow distur-

:"bances and noise in excess of what is experienced with the unperturbed jet. The former

V, k
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may give rise to upstream travelling pressure waves which, under certain conditionshe3p,
building up a feedback loop with the downstream travelling 

jet instability wavies Thil,'P

phenomenon was thoroughly studied by Neuwerth (40]. The latter effect was occasionally 'N ,3
S observed in Jet noise farifield investigations, especially in so-called "causality (neai a :

field/ far field) correlations" (41].

It is quite clear from considerations like those in Sec. 2.4.3 that any acoustic dis-

turbances emanating from the probe will be amplified in the upstream direction as was
illustrated by Fig. 9. For flow Mach numbcrs Mf approaching unity this amplification plus
the onset of a strong feedback mechanism may well explain an increase in measured aero-
dynamic pressure fluctuation levels which is primarily due to the meacuring probe sitting
in and interacting sith the flow around it in a way which becomes critical at M, > 0.6

It is, however, pointed out here that a similarly strong probe-flow interaction effect
does not occur at Mo < 0.6 and that measurements at higher jet exit velocities,
UQ 2 20 m/s , seen not to have been affected if performed with the probe positioned in
the mixing region (the squares in Fig. 21) where the local mean flow Mach numbir stays
below 0.6 even when Mo approaches unity.

4.4.6 Fluctuating cross flow error

This error mechanism has already been discussed in Sec. 4.2. Let us assume that Vn, the
flow velocity fluctuations normal to the probe surface, to be of the same order of magni-
tude as 7, the axial velocity component. We may then conclude f,om Figs. iY through 20
that the measured pressure exceeds the critical value of Eq. (4.5) by orders of magnitude
except for those flow situations providing conditions for nearly isotropic turbulence
(e.g., the in-duct results downstream of a grid or perforated orifice in Fig. 20). In
FJg. 19 we have indicated both limits for isotropic turbulence and for the fluctuating
cross flow error.

4.4.7 Response to axial velocity fluctuations

We are left with one last possible source of error which may be due to yet another
unsteady flow/probe interference effect. To understand this effect in principle, consider
a steady (or slowly varying) potential flow about a stream-lined body simulating the

microphone probe as aligned with the mean flow di-
rection (Fig. 24). Only in a limited region B on
the surface of the body will the pressure pB be

- _-approximately equal to the undisturbed static pres-
sure p in the flow. Exterior to that distinguished

aol area the pressure differs 1rom p and similarly a
fluctuating pressure there cannot in general be ex-

08 pected to equal that at the measuring position in
I t W 

~
q the flow before the insertion of the probe.

06 ] The effect of variations in the axial flow velo-

city on the pressure fluctuations on the probe sur-
0o face was estimated in Ref. (18] for both acoustic

and aerodynamic pressure measurements with inserted

02 microphones. In this analysis the geometry of the
probe, particularly its diameter d, played an im-

/ 3_ _ portant role. In the limit

x /4 d << Ax,

where Ax is the axial scale of the aerodynamic
pressure inhomogeneities (or the wave length X in

p Pressure distribution for tho case of a sound wave propagating in the axial

eajy, symmetric flow around direction) two special cases may be considered
the pressu-e probe [18]. here;

(a) Aoust.c .ressure.at theprobe.ti

fd/aa = d/A << 1 1 + M0 . (4.15)

For Mach numbers approaching unity the sound pressure level may thus be measured too
high by up to 6 dB due to the response of the probe at x - 0 to the acoustic par-
ticle velocity of the incident sound wave. At any other point on the probe surface
this error would be much less.

(b) A0E 4Xd _n2-ic. re et-cXlindrical ring e2nt (Fig. 24)

One could think of designing a probe with rressure holes located exactly where
* the mean static pressure PB just equals p in the udisturbed flow. In practical

situations with turbulence levels ov,-- 10 %, however, the instantaneous flow direc-
tion would continuously change with ime. This would shift the zero crossing of the
pressure distribution on thb probe surface and result in considerable stagnation
pressures in that particular region B. The small negative pressure at the cylindri-
cal ring element shown ;n Fig. 24, on the other hand, hau the advantage of not vary-
ing too much with the angle of incidence. For the profile chosen to imitate a stan- '<"'., -

dard B&K nose cone, of the old_.type, the error due to axial velocity variations was
roughly ',;imated in Ref. Ei8) as

. -'-A

V.. MM' >



p7  0".5(- 
(4.16)

provided that d fd = P'D U. <<+.(.7

and P and 0 are approximately related according to Eq. (4.6).

The estimate (11.16) was used in Fig. 19 to indicate a possible error response involved
in measurements of aerodynamic pressures of the type discussed in See. 3. For feasi !e
ways of further minimizing this "nose curvature error", in cases where should not domi-

nate over p7 of Eq. (4.16), refer to Refs. (18, 28].

5. AERODYNAMIC PRESSURE FIELDS IN WAKES AND IN JETS

In Sec. 4.4 we have given a detailed description of the error mechanisms involved in
measuring aerodynamic pressure fluctuations with inserted microphone probes. From the
survey of pressure data in Figs. 17 through 19 we may conclude that in free shear layers
the pressure measurements are most likely unaffected by possible probe-rlow interferences.
The validity of the measuring technique for practically important jets and wakes has
enabled extensive investigations into their unsteady flow fields. These have helped reveal
certain large-scale coherent turbulence phenomena which could not be identified in earlier
studies employing, e.g., hot-wire probes in the mixing region of turbulent jets. Charac-
teristic structures were found to exist in these flows which do not fit into conventional
concepts of turbulent eddies be they small or large. A large portion of the turbulence in
circular jets and wakes, for instance, can much better be described by a very pronounced,
three-dimensional wave field propagating with the mean flow.

As these, purely aerodynamic, wave structures have recently gained interest in the
field of experimental and theoretical aeroacoustics, we may briefly mention how these

waves behave in terms of the r.m.s.
pressure associated with them. Fig. 25
shows the downstream development of the

r- pressure level P/(1/2 poU 2 ) along the
010 --- 7 ecentre-line of (a) tho axisymmetric wakebehi~nd a ;;ircular" disk and (b) the axi-j symmetric free jet.

-PU .Particularly strong pressure pulsation
levels of up to 12 % of the (mean) total

005 -head pressure 1/2 POU 2 are realized
around x = 2.5 D in the downstream
stagnation point region behind the disk.
This amazingly high unsteadiness in the
aerodynamic pressure field in a wake
becomes an even more important factor in

75 unsteady aerodynamics as we now know that
0 25 50 75 ) these pres.aure oscillations occur cohe-

x/D rently over the whole of the wake in the

Fg. 25 Normalized pressure intensity lateral as well as in the longitudinal
P/h 

2  )  in a circular wake (- ) and directions "26).
jet (---).r=0 The jet pressure waves show a coipa-

ratively smooth increase in the initial
jet region up to a level below 4 % and (not shown in Fig. 25) & gradual decay in the
transition region. Far downstream the jet and wake pressure fie.ts seem to be comparable
in strength. On the disk surface, on the other hand, the fluctuating pressure remains
considerably above that in the jet exit plane (about 3 % as compared to 0.6 %, respective-
ly). This pressure will, of course, exert an unsteady aerodynamic force on the disk and
cause the jet thrust to fluctuate, too.

We coalude this short excursion into the field of unsteady aerodynamics with Fig. 26.
This shows that for both flows the linear relationships Eqs. (4.6) through (4.8) provioe

- - - - a fairly acceptable model for the pressure andfI axial velocity fluctuations. One would estimate
0 -axial phase velocities of the order

!! : 0.6 -0.9

P.U; in rough agreement with corresponding measure-
2 "ments [31]. It is noted, however, that a simple"+ t model like that leading to Eq. (4.6) cannot be

regarded Ps a substitute for necessarily more

0 "-comprehensive itudies of the individual pressure
- - j fi.eld characteristics of the flows so briefly

- ____o_ described in Sec. 4.3.
1 2 3 5 6 7 8

'7 Fig. 26* Dimensionless ratio D/poU
in a circular wake (-) and jet (---).
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6. SOUND PRESSURE MEASUREMENTS IN TURBULENT PLOW ...
otiorbs'b imhrofie ,th In Chapters 4

pipe material slit cloth protection grid and 5 we have dis-

cussed in-flowCr probe measurements
of the true flow
pressure field

S ._assumed not to be
contaminated by

I- "..any spurious pres-
sure fluctuations

Pis Schematic of a slit-tube microphone probe for sound measure- as due to internal
ments in turbulent flow [43]. or external sound

sources. Other
aeroacoustic problems require the
measuremenc of sound pressure

80 fields superimposed on a turbu--K - - lent flow, e.g., in model expe-
sound propagation in ventilating

70 ducts is to be studied. It is
-0 - - then necessary to not only avoid

201ogO any kind of probe/flow interfe-
P.- - \ rence generating extra noise but

also suppress the detection of
60 - the above described aerodynamic

pressures already present in the
___ _ flow before the insertion of the

probe. The latter can be seen in
41 Fig. 21 to reach remarkably high
020 50 100 200 500 1000 2000 5000 Hz 20000 pressure levels.

-" To give an example, the in-duct method for determining the
Fig. 28: Turbulent flow pressure spectra measured in a sound mod td b tb-
Not by means of a 1/2-in. B&K condenser microphone sounpower generaed by turo
(a) with nose cone machines [38J requires that the
(b) with slit tube [43]. unwanted flow pressure level be
Uri 0 O m/s, 15 % turbulence level, reduced as much as possible inr 0 m, x = 5 D, Af t 10 Hz. order to achieve an optimum

signal-to-noise ratio for the

sound measurements. For tnis
purpose, Neise [27] has developed a slit-tube microphone probe a cross-sectional view of
which is shown in Fig. 27. It enables a suppression of the turbulent flow pressure by
more than 12 dB over a broad range of frequencies as long as the duct flow Mach number is
low enough (Fig. 28).

Since we have no space here to discuss this important measuring procedure in depth the
interested reader may refer to Noise's most recent paper [143]. There he may also find re-
commendations how one can check the validity of this technique in cases where the flow
turbuience level cannot be measured separately.
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LIST OF SYMBOLS

a sound propagation speed
a4  speed of so .d in medium at rest

source stre,.gth
mean flow '.locity vector (Fig. 1)

C source convection factor (Eq. (2.54))
d pressure probe diameter
f frequency
L acoustic pressure fluctuation level (dB)
Lc coherence length scale
Lp aerodynamic pressure fluctuation level (Eq. (4.12))

source length scale
M flow Mach number (Eq. (2.10))
Mc Mach number of relative motion (Eq. (2.11))
Mf Mach number of source and observer in motion (Eq. (2.66))
M. Jet exit Mach number
M Mach number of observer in motion (Eq. (2.63))
M0 Mach number of source in motion (Eq. (2.46))
p pressure
00 pressure amplitude radiated by a stationary source

in a medium at • st (Eq. (2.39))
Q source
r source-observer distance
rb source-observer distance in Lorentz system (Eq. (2.13))
R source-observer distance at the time of emission
R, defined in Eq. (2.48)
t time

tr  retarded time (Eq. (2.45))
u speed at which source moves (Fig. 2)
vi  particle velocity vector
xi  fixed (Cartesian) coordinates

x' Galilean-transformed coordinates (Eq. (2.2))1
xi* Lorentz-transformed coordinates (Eq. (2.8))

xia flow coordinates (Eq. (2.5))

xib specified Lorentz coordinates (Eq. (2.12))

xIC source coordinates (Eq. (2.16))

y coefficient defined in Eqs. (4.6) and (4.7)

0 observation angle between r and the direction of
motion (Table 2)

0 emission angle between R and the direction of motion
(Table 2)

A a .,.tic wave length
Ax axial scale of a flow inhomogeneity

Pa fluid density
0 velocity potential
w9 source frequency
Wb frequency in Lorentz system
Wn radian frequency
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